
An App Design for Complex Rhythm Sequencing
Regis Verdin

Georgia Tech Center for Music Technology
840 McMillan St.

Atlanta, GA 30332
1 (415) 305-9212

regisverdin@gmail.com

ABSTRACT

This project involves the design and implementation of a music
sequencer app for iOS. The app seeks to allow a novel approach
to composing rhythms. The possibilities and limitations of music
hardware and software play a large role in shaping and guiding
the creative possibilities when using that technology. It was
observed that electronic music sequencers tend to fall into two
categories: quantized to a regular pulse, or completely un-
quantized. The app presented here explores an approach
somewhere in the middle: the user can define their own irregular
quantization patterns, and add audio clips to the available steps in
these patterns. This paper discusses the design considerations, the
details of the implementation, and an evaluation of the usefulness
of the app’s novel features.

1. INTRODUCTION

1.1 Rhythmic Complexity

Rhythm is a highly expressive aspect of music, and the author
believes that more tools could be made to facilitate new kinds of
rhythmic expression and meaning. These tools could introduce the
subtleties of rhythm found in human acoustic performance into
music created with digital means, while also opening up
possibilities that would be difficult or impossible for humans to
perform (moving beyond the computer simply imitating human
performance). This project aims to develop a tool like this, with
its basis in music sequencers.

The app attempts to expand the user’s expressive and creative
possibilities by making more complexity and subtlety available in
the way rhythms are crafted. Rhythmic complexity has been
deeply explored in many areas of music, including the realm of
iOS music apps which this project inhabits. This app, however,
seeks to allow the user to explore rhythm in a more continuous
time domain rather than a discretized one.

1.2 Music Sequencers

Automated devices for sequencing musical events have existed
since as early as the 9th century. Since the industrial revolution,
mechanization and automation have played ever increasing roles
in our lives, and this has extended far into the realm of music.
Precision, regularity, and speed are what computers excel at, and
it is no wonder that the software for creating music with
computers often reflect this bias. Step sequencers in particular
reflect these characteristics, with their quantized step sizes and
agility at playing repetitive patterns.

There has been some effort in the commercial realm to create
electronic music tools that sound less rhythmically rigid, and more

human. This is often achieved by shifting the step onset times to
create swing. In some other cases (as with Finale’s Human
Playback) the attempt at eliminating rigidity goes beyond solely
rhythm, and applies to dynamics and phrasing as well. The app
designed here explores the extension of these rhythmic ideas from
step sequencers, by allowing novel types of swing and other
continuous-time rhythmic alterations to be used as an integral part
of the music creation process.

1.3 Research Goals

The primary goal in this project was to design and prototype a
user interface for a new type of rhythm sequencer that could be
used to generate complex rhythms, with a focus on rhythms in a
more continuous time domain than discrete. The app draws
influence from step sequencers in that audio clips must be placed
on a quantized grid. However, the quantized grid can be defined
and modified in a number of ways not normally possible in step
sequencers. While rhythmic complexity can certainly be achieved
using discrete methods and even subdivisions, the goal in this
project was to break away from those models of rhythm.

Target users for this app are musicians with an interest in
composing using novel music-theoretical techniques, likely
working within the context of experimental music. To allow the
user to focus on composition more than implementation, the goal
was to design an interface that provided a simplified workflow.
The primary use-case for the app is composition rather than live
performance or improvisation.

Certain design requirements were considered integral to the
project, and were used as metrics of the project’s success. First,
the system should be capable of reproducing un-quantized
subtleties of human rhythmic performance. To achieve this, the
system takes the notion of temperament from tuning as an
analogy. Finally, the system should be able to not only achieve
these human-sounding rhythms, but also extend them to generate
novel rhythms.

2. RELATED WORK

2.1 Related Music

The inspiration for these ideas came largely from hearing existing
musical examples, and trying to understand how the rhythms in
them could be generated with a computer and extended beyond
their human form. In particular, the focus here was on rhythms
that could not be well described as rational, or as not having a
perceptible unit of subdivision (if any at all).

Swing in jazz is an example of a rhythmic performance practice
that fits the above description. When a piece of music is played

with swing, pulses of the same notated duration will have
different actual durations when performed. A typical (if
somewhat reductive) view of this is that every 2nd eight-note in
the measure is shifted towards the 3rd note in an eight note triplet.
The degree to which these notes are shifted indicates how “heavy”
the swing is.

A more complex example of a swing-like rhythmic feature can be
found in the Tigrigna music of Ethiopia and Eritrea. A recording
of Tsehaytu Beraki’s “Bazay” [1] reveals this unique rhythm. A
subdivision into five pulses can be heard. The pulses are not
evenly spaced: they are roughly grouped in two parts, the first
three as triplet-8th-notes, and the last two as 8th-notes. Altogether,
however, the pulses are also “swung” towards five quintuplet- 8th-
notes. The emphasis varies depending on the section of the song
and the instrument. For example, the bass plays closer to the
triplet values, while the guitar plays somewhere in the middle.
Later in the song, the entire ensemble shifts closer to a straight 5
feel. The unit of subdivision seems to change throughout the
measure, and throughout the piece of music. Its flexibility serves
an expressive and structural role.

Interestingly, modern popular Tigrigna music does not reveal
much or any variation in the pulse length, which is likely the
result of it being produced with step sequencers that cannot
achieve that effect. This highlights a concern that the ease of
making quantized music might be encouraging musicians to
sacrifice a certain level of depth found in human performance
practice.

Conlon Nancarrow’s music is also relevant here, as a number of
his Studies for Player Piano have irrational rhythms in a literal
sense: they are generated from irrational numbers. For example,
his Study 33 Canon 2 [2] features a sequence of 2-unit pulses
superimposed on a sequence of √2-unit pulses. The relationship
between these two lines is irrational, so there is no possibility of
subdivision into a regular step size that accommodates both sets of
pulses. Nancarrow’s music reflects a desire to extend rhythmic
complexity far beyond normal human capabilities.

2.2 Related Music Theory: Tuning

The construction of rhythm can be informed by analogy to tuning
systems. While there are clear differences in the perception of
pitch and rhythm (the former being perceived on a roughly
logarithmic scale, the latter linear), the analogy is still worth
investigating.

To approach creating human-like rhythms, some approximations
in timing are desirable. Temperament in tuning features a kind of
approximation that was taken as a starting point here. In order to
address the goal of approaching human rhythms, the notion of
tempering commas was applied to rhythmic beats (not the
acoustic meaning of beat), in order to generate new beat timings.
Some background on temperaments: tuning systems are generally
classified as either just-intonation or as temperaments. Just-
tunings have rational intervals, while temperaments trade off
having rational intervals for some other feature, such as intervallic
consistency in transposition. In just-tunings, there is a notion of
“harmonic limit”: a limit is the highest prime number that is
present as a factor of (or is used to generate) the ratios of intervals
in the tuning system. [3]

Figure 1 shows two sets of just intervals (top and bottom rows)
being tempered to create a new set of intervals (center row). The
top row is a 5-limit system, the bottom row 2-limit. The comma
being “tempered out” is the small interval between 3 just-major
thirds ((5/4) ^3) stacked and the octave (2/1), also known as the
diesis.
The tempered set in the center gives access to two interpretations
of intervals. For example, a musician now has a note C that
roughly stands for both “the pitch a just-major third up from G#”
and for “the octave above the lower C”. These two interpretations
are not reconcilable without tempering. Tempered intervals gives
access to several approximated prime generators (like 5 and 2 in
figure 1), which can increase the harmonic complexity by
allowing ambiguity through harmonic double-entendres.

Figure 1. Tempered Tunings

This idea can be roughly carried over into the rhythmic domain:
by slightly lengthening or shortening a unit of the music’s pulse, a
different generating subdivision can be suggested. Clearly this can
be done without any shifting, as in hemiola (using a change in
accent pattern), but this project focuses on cases where the
different suggested subdivisions are coprime (as in 5 and 7).
Figure 2 shows this rhythmic temperament process being applied
to subdivisions of 5 and 7, with values being selected exactly in
between their corresponding beats.

Figure 2. Tempered Rhythms

The choice of beats to map onto each other is somewhat arbitrary,
although perhaps they could be chosen based on concepts like
“evenness”: the beats chosen for mapping from the top and
bottom set could form a Euclidean rhythm [4] within their
respective subdivisions. One might also consider that the center
rhythm is not technically irrational, with a subdivision into 70
parts. However, it effectively is because this subdivision is too
fast for a human musician to perform or hear. Note that the

tempered rhythm does not necessarily need to be exactly in the
middle of the pair of beats from both patterns: it can be
interpolated gradually. Also note where the analogy somewhat
breaks: in the rhythm domain when we “temper” we go from even
divisions to uneven divisions, while the opposite is true in the
pitch domain.

2.3 Related Music Technology

Many step sequencers allow the user to add swing, even on the
simplest of drum machines. A knob can usually be turned to
adjust the amount of swing. A more advanced sequencer like
Ableton Live allows the user to select from a number of preset
“groove” patterns, where the length of each beat varies depending
on the selected style of groove.

There are also many existing music technology products that
accommodate discrete forms of rhythmic complexity. These tend
to be geared towards generating polyrhythmic or polymetric
music. In the iOS music world, one of the most popular apps with
the potential to create complex rhythms is Patterning [5]. It is a
circular grid-based step sequencer that allows user-defined
polyrhythms and polymeters, and a number of other interesting
rhythmic effects such as rotating the starting time on each
measure. Another app named Sector [6] uses a transition matrix as
a model for ordering audio clips, which in itself can create
interesting rhythmic arrangements. For instruments that allow
generative approaches to music creation like Rhythm Necklace
[7], Euclidean algorithms are commonly found.

3. METHOD

3.1 Abstraction of Swing

An abstraction of swing was taken as the starting point for the
design. A regular jazz swing can be seen in figure 3. This can be
made more musically interesting if one considers the process of
transforming the swing; each of these iterations in the two note-
pattern interpolation have a unique sound. The transition itself
could become a musical feature, occurring over any number of
iterations.

Figure 3. Swing

When treating swing as an interpolation between n-note patterns,
rather than just 2-note patterns, we can find a way to model
rhythms like those found in Tigrigna music. For example, figure 4
shows an interpolation between two different 4-note patterns.
There is also the possibility of transitioning between patterns that
have different numbers of beats. This could involve mapping
multiple beats from one pattern onto a single beat on the other.

Figure 4. Swing Abstraction

3.2 Design Description and Considerations

The design of the app consists of roughly 4 screen sections: a
timeline view, transport control, tool panel, and a tabbed audio
clip selection panel. The app was limited to iPad-only because of
space constraints on smaller devices.

Figure 5. App Design

The design was conceived largely from deciding which musical
possibilities should be allowed, then creating walkthroughs to see
what features should be added to accommodate the musical
requirements.

The timeline consists of horizontal tracks containing two
elements: grid markers and clips. Grid markers define locations in
the timeline where events can be triggered. They are similar to the
quantization grid in many DAWs and sequencers. However, their
locations are customizable and must be set by the user. In the
appropriate mode, the user can tap a location in the timeline to
add a grid marker. Guides should be shown to help the user align
elements between tracks.

The height of each grid marker is determined by the user’s touch
location when adding it, and indicates the playback amplitude for
that location. Linking amplitude to the rhythmic grid, rather than
specific clips in the grid, was done to facilitate making sequences
of accent patterns that could be copied and repeated. Dynamic
patterns were felt to be a significant component of rhythm, and so
the association between the two is somewhat fixed in this design
(although there is certainly room for manual adjustment of
amplitudes). Audio or MIDI clips can then be placed on grid
markers. This associates the clip with a time and amplitude in the
timeline.

The transport control design is fairly standard for audio software,
and contains the following: a play/pause toggle button, a back-to-

beginning button, a tempo slider, and a volume slider. The
definition of tempo here is somewhat abstract as there is no fixed
beat-length; instead, it is simply displayed as a unit-less scaling
factor for all the time intervals. This makes synchronization with
other music software somewhat of a challenge, but for now the
design treats this app as the master clock.

On the bottom left is the tool panel, which is divided into several
sections: Main-Mode Selectors, Draw Tools, Fill Tools, Selection
Tools, and Modification Tools. Clip Mode and Snap are state
changing toggles that affect most of the other buttons. Draw
single/group lets the user tap new grid markers into the timeline.
If Clip Mode is toggled, then this allows the user to choose a clip
from the clips panel and add it to an existing grid marker in the
timeline. If snap is not selected, then the user can add a clip and a
grid marker at the same time to any location. Typing draw allows
the user to type in the clips panel and have that clip be added to
the next available grid marker.

Pattern fill lets the user type a code (using the numbers in the clip
panel) that automatically adds a sequence to the timeline,
sequentially placing clips on grid markers. The code displays in
the Pattern area, and specifies a rhythm with a sequence of pairs:
clip number, followed by number of repetitions. The – (minus)
key can be used in place of clip number to specify rests, while +
(plus) is used to sustain the previous clip.

The selection tools do as they say: select either grid markers or
clips in the timeline (depending on main modes). Hold adds to
selection, working somewhat like a shift key on a computer
keyboard but also inverting the selection. The All buttons select
all elements left or right of the tapped point. Pattern select uses a
similar code as Pattern Fill to specify which timeline elements
should be selected.

Assuming the user has made a selection, they can now use the
tools in the Modify section. Shift lets the user drag selected clips
left or right. If clip mode and snapping are enabled, then this
moves the assigned clips to the previous or following grid markers
without shifting the grid markers themselves. Scale is used to
resize the selection by expanding or contracting it. If an outer grid
marker is selected as a handle, the entire selection is resized by
dragging. If a grid marker in the middle of a selection is used as a
handle for scaling, then the outer selected elements are fixed and
the inner elements are moved proportionately with the dragged
handle.

The remaining buttons are not toggle buttons but one-time
modification buttons. Subdivide adds n-steps in between each
selected element, where n is determined by the selected number in
the clips panel. Rotate shifts all selected elements forward and
places the last one at the front of the selection. Reverse and delete
are self explanatory.

In bottom right corner we have 3 tabs: Clips, Groups, and Rhythm
Designer. The Clips tab allows the user to assign audio clips or
MIDI note numbers to any of 16 clip spaces. + and – are used as
part of the pattern code to indicate “hold previous note” or “rest”,
respectively. ? picks a clip number at random (and picks a new
random value every time a clip is placed).

The Groups tab in Figure 6 works much like the Clips panel,
except that it holds groups of grid markers or clip sequences. This
was meant to encourage reuse of material, as the user can add a
selection to this bank at any time. This takes the place of a
copy/paste button.

Figure 6. Groups

The Rhythm Designer shown in figure 7 allows the user to create
rhythmic temperaments. The user first should create the top grid
markers by selecting a subdivision (like 7 or 5), and choosing
which beats should be part of the final template. The user repeats
this process for the bottom template, then chooses which beats
should be mapped to each other by dragging arrows. Finally, the
green slider handle can be dragged to choose the amount of
interpolation between the two subdivisions, resulting in rhythmic
timings corresponding to the blue dots along the center row.

Figure 7. Rhythm Designer

These graphics were intended as low-fidelity wireframes of the
app for prototyping purposes, so many important aesthetic
decisions were glossed over. One significant consideration here,
however, was the background color: a dark theme was chosen to
accommodate use in dark rooms, which is a common music
performance setting.

3.3 Implementation Description

A basic prototype of the Rhythm Designer panel was implemented
in Max/MSP to decide whether the rhythms it could produce
might be musically interesting or worthwhile. Following this,
development in iOS became the main task. Ionic, a framework for
developing iOS apps using web technology, was initially
considered but abandoned due to lack of reliable audio
performance and timing. A prototype was implemented using
Objective-C. The SpriteKit framework was used to handle
animation of the timeline, and The Amazing Audio Engine 2
framework [8] was used to schedule and play audio. The program
structure is outlined in figure 8, and uses the Model-View-
Controller design pattern as required by Apple.

Figure 8. Program Structure

The transport controls have play/stop (no pause yet) and loop
functions. An import audio button is used to test loading of
external audio files using Kymatica’s AudioShare app [9]. This
will eventually be the main way to manage audio files for this
app, but for now the audio files are loaded into the app’s memory
with no way for the user to access them.

Figure 9. Prototype Implementation

The timeline view can be seen with two tracks available, the
default number. The user can add grid markers and clips as
described before. Selections can be made, with Add to Selection
taking the place of the former term Hold. The modification tools
Shift, Scale, Subdivide, and Delete all have basically functionality
implemented. Figure 10 shows a selection of red grid markers,
initially evenly spaced with the Subdivide tool, being Scaled with
the blue grid marker as an anchor. The red vertical line is the
playhead.

Figure 10. Subdividing and Scaling

Assign Midi Note can be toggled, allowing the user to tap a clip
number and then select a MIDI note number for that clip from a
UIPicker (see Figure 10). The groups and rhythm designer tabs
have not yet been implemented, along with several other features
such as the fill and pattern-related tools.

Figure 11. Assign MIDI Note Number to Clip

4. DISCUSSION

4.1 Evaluation of Programming

Once the basic layout was implemented, the backend of the
TimelineScene took the most time. The app’s toggle states are
maintained successfully, with buttons being deselected when their
state no longer applies to a new button selection.

One issue that repeatedly came up while building the app is the
difficulty of accessing certain methods and properties of objects
not owned by the calling object. The program structure reflects an
initial lack of understanding that Objective-C objects do not have
“class variables” (as opposed to instance variables). These can,
however, be implemented using C++ static variables, with several
caveats. The object creation structure, which is a chain from
TimelineScene down to the individual TimePoints, also
contributes to these access difficulties. It resulted in many
redundant methods that call down the chain. This results in
several points where MVC is not applied consistently.

The implementation in its current state contains a number of bugs
which should not be problematic to fix. For example, when
dragging elements in the timeline with clips in it, the clips resize
incorrectly when grid markers overlap with them. A more
significant bug involves the audio: there is a load click at the
beginning and end of every audio buffer loaded into the timeline,
which is disruptive and made it difficult to evaluate the musical
usefulness of the app.

A major refactoring is also needed regarding the various data
structures holding time-points. Aside from the array containing
these points in the AudioController, the time-points are not
generally inserted in sorted order. This creates algorithmic
complexity issues that affect the performance of “modify” tools in
the UI (especially when dragging), because sorting is often used
to find and compare or modify relevant time-points.

4.2 Evaluation of Implemented Design
Features

The implemented design features were evaluated using a small set
of expert users of music technology from the Georgia Tech Center
for Music Technology, including the author. Users were initially
asked to explore the app as though they were learning it on their
own, while their actions and workflow were observed. They were
asked to describe their actions as they took them, and explain why
they made certain choices.
A basic analytical framework for evaluating interactive music
systems was applied here. The input, output, mappings, and
workflow were considered, along with the initial project’s goals of
creating various types of rhythmic complexity. The degree to
which these features facilitated musical expression, subtlety, and
enjoyment was questioned. A comparison with the complex drum
machine app Patterning [5] was used to ground the discussion.
Based on this, we consider the prototype’s successes, failures, and
limitations. These should guide future improvements.

The first element called into question was the app’s requirement
that everything be pre-composed, rather than improvised on the
fly. Initially, there was no loop button but it became evident that

this was one of the most important features (especially for testing
purposes). Looping rhythms gives the musical creation process a
sense of continuity without having a predetermined trajectory.
This can be seen clearly in an app like Patterning, where the user
can additively create a rhythm while continuously auditioning
their material. Listening and performing are integrated into the
composition process, which is more instantaneously rewarding.

The factor of immediacy is one that had not been regarded
carefully enough here, but is very significant. Many iOS music
apps require 2 or less buttons to be pressed before music is heard,
which is the case with Patterning: tap a space in the circular grid,
then press the play button and your first rhythm is heard. The
workflow acts as a tutorial as well, as it allows the user to
gradually incrementally explore the functionality without ever
getting stuck in an unmusical moment. While this project’s app
did not set out with live-composition or improvisation as major
goals, it seems that it should have been, given the iOS music app
context and portability of the device.

In this kind of an environment, breaking the user’s expectation is
immediately negative if there is no clear promise of future gain
from the lack of immediacy. In other words, simplicity and
looping make music apps more fun. The current workflow in this
project’s app adds to this lack of fun and immediacy, as it requires
the user to tap a precise sequence of about 6 buttons all over the
screen in order to achieve a simple sound. Some of this could be
mitigated by adding more touch-drag based features for adding
clips to the timeline, rather than tapping buttons.

Patterning also contains a feature which is sorely lacking from
this app: the ability to create and rearrange higher level structure
from individual sequences, using the Song tab. A user can tap to
add their currently looping sequence to a timeline (which itself
can be looped), then continue to evolve their current loop without
worrying about overwriting it. While this need had certainly been
considered in this project’s app, it seems that currently the only
real option here is to rearrange everything on a low level that
extends for the length of an entire song. Adding the missing
Groups tab might help with this, but more support for large scale
repetition and variation will likely be needed.

In terms of the rhythms, there were some successes. The rhythms
are certainly in a continuous time domain, which fulfills one
major goal of the project. The rhythms tested sounded somewhat
human in their irregular timing. However, this highlighted a
significant factor in what makes a rhythm sound natural or human:
amplitude envelope of the sound. As it stands, there is no
envelope placed on the clips, which inherently sounds machine
like in its lack of subtlety. As for the goal of extending the
rhythms into the realm of novelty, the app succeeds immediately,
although it is difficult to tell what is a useful rhythm because of
the audio glitches. The note-off click is especially disruptive, as it
doesn’t come at a user-defined moment and so is not predictable
or controllable.

While the rhythms produced by the app certainly are complex and
in a continuous domain, the interface still feels too close to a
DAW sequencer with little rhythmic guidance. The author
attempted to create some of the human rhythms discussed earlier,
but without the Rhythm Designer implemented it was somewhat
tedious and less successful. The Max/MSP implementation of the
Rhythm Designer however did seem to create useful and musical
rhythms, especially as the interpolation slider was moved to
transition from one rhythm to another. Judging the sound of a
rhythm from its visual position, which is the basis of the UI, gave
unexpected and often interesting results.

5. FUTURE WORK AND CONCLUSIONS

This project was an exploration of novel rhythmic sequencing
strategies implemented as an iPad application. The evaluation of
the prototyped features suggested many design changes and bug
fixes, which will be worked on in the near future.

The bugs described in the implementation evaluation clearly need
fixing. Workflow speed and ease needs to be addressed, and the
ability to create higher level musical form using repetition should
be given higher priority. It could be interesting to sequence higher
level sections using similar methods to those used in sequencing
the grid markers and clips, especially if modification tools could
be applied at the high level as well.

There is a question of how to convey rhythmic meaning to the
user in this kind of timeline, without having a fixed grid. Some
system of annotations to the timeline should help with this,
suggesting alignments and possible similarity to various
subdivision “limits”. On a related note, the user needs more
guidance in this open world of continuous rhythms. A possibility
is to have preset grids as a default on the timeline, allowing the
user to clear or alter them if so desired. A blank page is the best
way to writer’s block, and this is unfortunately what the current
UI begins with.

Whether the rhythms have the musical merit that justifies the
complexity of generating them has yet to be seen, although it
seems likely that simplifying the workflow will help with
evaluating this. Beyond the basic usability issues, the best way to
truly evaluate the musical effectiveness of the rhythmic
complexities described here would be through composition and
improvisation. A series of compositions should showcase features
and inform future developments.

This app’s design, prototype, and evaluation explored the
possibility of expanding the standard rhythmic palette of step

sequencers. Time in the real world is often perceived as repetitive
yet in reality, these perceived repetitions come with infinite
subtleties and variations. Heartbeats have a constantly shifting
tempo, seasons appear at irregular intervals, and years need to be
tempered with leap days to accommodate their discretization. The
hope is to see more of this richness reflected in the world of
music.

6. REFERENCES
[1] Beraki, Tsehaytu 1970. Bazay. Ethiopiques, Vol. 5 (1970-

1975) (reissue). Amha Records.
[2] Nancarrow, Conlon 1968. Study No. 33. Studies For Player

Piano (1949-1988).

[3] Various authors. The Xenharmonic Wiki. (Jan 2015)
http://xenharmonic.wikispaces.com/

[4] Toussaint, Godfried 2005. The Euclidean Algorithm
Generates Traditional Musical Rhythms. McGill University,
School of Computer Science.

[5] Kamen, Ben 2015. Patterning (app). Olympia Noise Co.
http://www.olympianoiseco.com/apps/patterning/

[6] Liljedahl, Jonatan 2014. Sector (app). Kymatica.
http://kymatica.com/Software/Sector

[7] O’Reilly, M., Tarakaijian, S. 2015. Rhythm Necklace.
http://rhythmnecklace.com/

[8] Tyson, M. 2016. The Amazing Audio Engine 2.
http://theamazingaudioengine.com/

[9] Liljedahl, Jonatan 2014. AudioShare (app). Kymatica.
http://kymatica.com/Software/AudioShare

