
EarSketch

JavaScript Curriculum

Version: 8/8/2015

The EarSketch curriculum and teaching materials are licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.

Table of Contents

PART I:Welcome 7

CHAPTER 1: Getting Started with EarSketch 9

Why Learn Programming for Music? 9

Tools of the Trade: DAWs and APIs 10

The EarSketch Workspace 11

Running a Script 17

Adding Comments 19

The DAW in Detail 19

What is Programming? 20

Composing In EarSketch

Why Learn to Program? 24

CHAPTER 2: The Building Blocks of a Program 27

Rhythm 27

Data Types 29

Numbers 29

Variables 30

Constants 33

CHAPTER 3: The Core EarSketch Functions 35

Effects 35

setEffect 36

i

Making Custom Beats 38

Strings 39

Beat Patterns with Strings 40

makeBeat 41

CHAPTER 4: Debugging 43

What is Debugging? 43

Using the Console 43

Printing in the Console 45

The Debugging Process 46

CHAPTER 5: Looping 49

Repetition in Music and Technology 49

A Loop Example 50

Components of a For Loop 52

Following the Control Flow 53

CHAPTER 6: Making Decisions 59

Musical Repetition vs. Contrast 59

Conditional Statements: if...then 59

Else 61

Conditional Statements In Loops 62

Fills and Modulo 63

Operators, Expressions, and Statements 65

Conclusions 66

CHAPTER 7: Musical Form 69

Sections and Form 69

A-B-A Form 69

User-Defined Functions 71

Return Statements 73

Abstraction 76

Conclusions 76

CHAPTER 8: Making a Drum Set 77
Lists

Table of Contents

ii

Iterating through Lists
Using Lists with makeBeat
List Operations

CHAPTER 9: Randomness and Strings 85

Random Numbers 85

String Operations: Concatenation 87

String Operations: Substrings 89

Remixing a rhythm 90

CHAPTER 10: More Effects 95

Envelopes 95

Envelopes with setEffect 96

Automating Effects 99

CHAPTER 11: Teaching Computers to Listen 103

Music Information Retrieval 103

Analysis Features 104

Boolean Operators 109

CHAPTER 12: Sonification 115

Images as Data 115

Multidimensional Lists 116

importImage

Nested Loops 120

CHAPTER 13: Sorting 129

Sorting and Analysis 129

CHAPTER 14: Recursion 135

What is a Fractal? 135

What is Recursion? (Part 1) 140

What is Recursion? (Part 2) 143

Cantor Set 149

The Thue-Morse Sequence 151

Table of Contents

iii

The Towers of Hanoi 157

CHAPTER 15: The EarSketch API 161

CHAPTER 16: Every Effect Explained in Detail 163

CHAPTER 17: Analysis Features 183

CHAPTER 18: Creating Beats with makeBeat 187

CHAPTER 19: Additional Examples 197

Case Study 1: Volume 197

Case Study 2: Distortion 199

Case Study 3: Panning 1 200

Case Study 4: Panning 2 201

Case Study 5: Pitchshifting 202

Abstracting the remix 204

CHAPTER 20: EarSketch Sound Library 207

CHAPTER 21: Programming Reference 209

Online JavaScript Interpreter 209

External Help 209

What is Programming? 209

Programming Terms 210

Online Python Interpreter

External Help

What is Programming?

Programming Terms

Python Keywords

CHAPTER 22: Recording & Uploading Sounds 215

CHAPTER 23: Copyright 221
What is Copyright?
Music and Sampling

Fair Use 225

Table of Contents

iv

Licensing and Free Culture 227

CHAPTER 24: Curriculum PDF 231

CHAPTER 25: Teacher Materials 233

Table of Contents

v

PART 1

Welcome

Welcome to EarSketch! In these lessons, you will be learning computer science
and music technology side by side. You will use either Python or JavaScript,
two of the most popular computer programming languages in the world, to cre-
ate and remix music within the same kind of digital audio workstation (DAW)
software used throughout the music industry. Along the way, we will cover im-
portant computer science concepts like variables, functions, lists, loops, and
conditionals, and we will connect them to important music and music technol-
ogy concepts like rhythm, form, effects, and multi-track editing.

Writing computer programs to create music has been an important part of
the music industry since the earliest days of computers over 50 years ago, and
is at its most popular today. Musicians and programmers write computer code
for many exciting uses: from creating new sounds or effects or musical struc-
tures, to designing entirely new ways to create and perform music.

Throughout this curriculum you will learn to write code that can help you
more easily make music, and make music that’s more unique to you. Once you
learn to write computer code, you can take those skills with you to any career
you can imagine, whether in the music industry or elsewhere.

Happy programming & composing!

Getting Started with EarSketch

Why Learn Programming for Music?
There are many ways to get involved in making music, including playing an in-
strument, writing music, designing sound for film, producing beats, and so on.
Computers have greatly expanded these possibilities. The musician’s toolbox
has grown, and new skills are needed to use these tools.

In EarSketch, you will write code that the computer understands as a set of
instructions, or an algorithm, to make music with. Not only does this make tra-
ditional styles of music-making more efficient, it also opens many new possibil-
ities for music that could never have existed before computers.

The practice of creating music by programming is called algorithmic com-
position. Here are some reasons you might want to program to create music:

• You can automate tedious tasks. Imagine that you want to combine
hundreds or even thousands of snippets of sound taken from dozens of
audio files. You can do this through a graphical user interface (or GUI) by
manually clicking and dragging audio files, but it will take many hours. If
you can efficiently describe what you want to do through a computer pro-
gram, you can create the same music in much less time.

• You can experiment more easily. After you create that song made out of
thousands of pieces of audio, what happens if it’s not perfect? You will
probably want to tweak it to make it better. Some changes, like adjusting
volume, are easy to make with a GUI. Other changes, like swapping out
every occurrence of an audio file for a new one, would take a really long
time to do with a graphical interface. Through programming, you can
quickly explore these “what if” questions by changing just one or two
lines of code.

• You can roll the dice. Algorithmic composition has a long history of using
the computer to make random decisions, like flipping a coin or dice. One
reason for doing this is to make the music sound more human. For exam-
ple, you might randomly change the starting time of an audio clip by a
tiny amount each time it is repeated, in order to simulate the imperfect
timing of humans. Or you might randomly choose among 5 different var-

9

1

iations of a drum beat in each measure of music, so that the drum track
always sounds just a little bit different and unpredictable.

• You can turn anything into music. Programming enables you to easily
map data from any domain into music. The daily value of the stock mar-
ket can control the changing volume of a track; the amount of rainfall
in each month of the year can generate a new rhythm; or the words in a
poem can control the order in which different musical clips are arranged
on a timeline. This process is called data sonification.

Here’s an example of some music made in EarSketch. This example is in an
electronic dance music style, but you can make any kind of music you like here.
audioMedia/Buzzjam.mp3

Tools of the Trade: DAWs and APIs
Music-making is often broken up into different jobs, to spread the work out.
These job titles include: composer, lyricist, performer, recording engineer, pro-
ducer, mixing/mastering engineer, and many others. They often overlap, and
personal computers make it easier than ever for one person to take on many
roles. In EarSketch, you’ll get a chance to take on several of these roles.

The main tool for producing music on a computer is the Digital Audio Work-
station, or DAW. A DAW is a piece of computer software for recording, editing,
and playing digital audio files. Audio files store information that the computer
uses to play back music. In the context of a DAW, these audio files are called
clips. The DAW allows you to edit and combine multiple clips simultaneously
on a musical timeline, and to see and hear how they line up over time. It also
makes it easy to synchronize clips with each other. DAWs are used in both pro-
fessional recording studios and in home laptop-based studios. Two popular
DAWs are Pro Tools and Logic Pro.

So what exactly is EarSketch? EarSketch is a DAW with extra features: the
ability to place audio clips into a DAW timeline using computer code. This opens
up musical possibilities that are difficult or impossible to create with a regular
DAW, and makes many tasks much faster. Just like EarSketch adds extra fea-
tures to a DAW, it also adds features to a programming language. Programming
languages come with a set of built-in tools, most of which are general-
purpose. EarSketch adds extra tools to this set to help us accomplish our specif-
ic goal of making music. This collection of tools is called an Application Pro-
gramming Interface, or API. Other examples of APIs include the Google Maps
API (a set of tools for embedding maps into websites or apps) and the Web Au-
dio API (tools for working with audio in websites).

CHAPTER 1: Getting Started with EarSketch

10

http://www.avid.com/US/products/pro-tools-software
https://www.apple.com/logic-pro/

FIGURE 1-1

The navigation bar

The EarSketch Workspace
Let’s begin by making an account. Click register new account at the top right of
the workspace to get started.

The webpage you are visiting now is the EarSketch workspace. It consists
of several panels with different purposes. You can show or hide these panels by
clicking the green icons near the top left of the webpage, in the navigation bar:

From top to bottom, these 7 panels do the following:
Sound Browser - Sounds Tab: Here, you can browse and search a collection

of short pre-made audio clips for you to use in your music. The clips were made
by musicians/producers Young Guru and Richard Devine. We will learn to add
these clips to the DAW by writing code. To upload or record your own sounds,
press the + symbol. You can find your uploaded sounds by clicking artists, then
selecting your username.

CHOOSING THE RIGHT SOUNDS

EarSketch’s audio clips are grouped into folders, with names indicating the style of
music they are usually used in. In the folders, you can find clips of different instru-
ments: drums, bass, guitar, keys, synth, and so on. The clips in each folder are de-

Getting Started with EarSketch

11

http://en.wikipedia.org/wiki/Young_Guru
http://en.wikipedia.org/wiki/Richard_Devine

signed to sound good together; if you’re unsure about how to choose the right clips
for your track, stick with one folder.

CHAPTER 1: Getting Started with EarSketch

12

FIGURE 1-2

Sound Browser -
Sounds

Getting Started with EarSketch

13

FIGURE 1-3

Sound Browser -
Scripts

Sound Browser - Scripts Tab: A list of your saved EarSketch projects. Each

script is a separate music project. Click a project title to open it in a new tab (in
the code editor panel).

Sound Browser - API Tab: A description of every EarSketch function. We will
learn more about this later.

CHAPTER 1: Getting Started with EarSketch

14

FIGURE 1-4

Sound Browser - API

Digital Audio Workstation (DAW): A timeline view of your current song,
showing which audio clips you have added to the song and when they come in.
It lets you hear your song, and also visualize its structure.

Getting Started with EarSketch

15

FIGURE 1-5

Digital Audio
Workstation (DAW)

FIGURE 1-6

Code Editor

FIGURE 1-7

Console

Code Editor: A text editor with numbered lines. Type your code here, press

“Run”, and it will turn into music in the DAW.

Console: The console displays important information about the code you

have just run in the code editor, including the location of errors in your code. It
is a common and important feature in programming interfaces.

CHAPTER 1: Getting Started with EarSketch

16

FIGURE 1-8

Curriculum

Curriculum: The current panel. Here, you can learn how to make music with
code.

Running a Script
The basic workflow when making a song in EarSketch is something like this:
type your musical code into the code editor, press the run button to execute the
code and add it to the DAW, and press play in the DAW to hear it.

Take a look at the bar just above the Code Editor panel. There are some use-
ful buttons and menus here: “Run” and “Options”.

Getting Started with EarSketch

17

LANGUAGE MODE

Click “Options” and select the programming language your class is working in:

“Python Mode” or “Javascript Mode”. There are many programming languages out
there, but these are two of the most popular. Keep in mind that the curriculum will
look different depending on which language mode you have selected.

Let’s try running a code example in EarSketch! First, make sure the code edi-
tor is visible (click its icon in the navigation bar). Now, take a look at the box of
text below: this is our code example. Press the clipboard icon at its top right to
copy it into the code editor. Don’t worry about understanding the code at this
point, we will learn its meaning later.

// javascript code
//
// script_name: Intro_Script
//
// author: The EarSketch Team
//
// description: This code adds one audio clip to the DAW
//
//
//

//Setup Section
init();
setTempo(120);

//Music Section
fitMedia(TECHNO_SYNTHPLUCK_001, 1, 1, 9);

//Finish Section
finish();

Python and Javascript are both called scripting languages, so your code is
called a script. In “Options”, press Save Script to Cloud, type a name like “My-
FirstScript”, and press save. Note that your script name cannot start with a
number, and that all non-letter characters (including spaces) in the script name
will become underscores. Be sure to save your work frequently! Take a look at
the other items in the “Options” menu: you can start a new script, save a script
or audio to your computer, and so on.

CHAPTER 1: Getting Started with EarSketch

18

To turn your code into music, press the “Run” button (above the code edi-
tor), and you should see some changes in the DAW and the Console. When you
press run, all of the instructions in your code are carried out. The console
should tell you which audio clips have been added to the DAW. In the DAW,
press the play button to hear the music.

Adding Comments
Let’s make a small modification to the current project. We’ll add our name to

the project. On lines 1-10, notice that each line starts with two forward-
slashes: //. The // tells the computer not to execute any code to the right of it
on that line. This is called a comment. Comments are used by programmers to
make notes on their code, for them or other programmers to read later. On line
5, to the right of “author:” type your name.

EarSketch projects are developed largely for personal expression, so if
you’re working alone on a project you might use your own preferred comment-
ing style. Bigger programming projects involving large-scale distribution will
often involve different standards and methods. Later in this course, we will
practice collaborative creative work in EarSketch. As you scale up, it may help
to agree with your team upon standards for commenting.

The DAW in Detail
Take a look at the DAW. The DAW consists of several items:

Playhead: The red line, which represents your playback location in the time-
line. The play button will start playback at the playhead’s location.

Transport Controls: The blue buttons at the top left of the DAW. You’ve
probably seen most of these in a media player like iTunes. From left to right, the
buttons are:

• Play/Pause: Press this to hear the music you’ve added. Playback begins
at the playhead.

• Reset: Press to jump the playhead back to the beginning.
• Rewind: Jump back in the timeline.
• Fast-Forward: Jump ahead in the timeline.
• Loop: When the playhead reaches the end of the timeline, automatically

start playing from the beginning again.
• Toggle Metronome: Play a click track over your music.

Measure Numbers: At the top of the DAW timeline, there is a horizontal ser-
ies of numbers. If this were a normal timeline, the numbers would represent mi-
nutes and seconds; however, here they represent measure numbers. A measure
is a unit of musical time that depends on the speed (a.k.a. tempo) of a song.

Getting Started with EarSketch

19

The tempo has to be specified in every script. More on this in the Rhythm sec-
tion. For now, think of a measure as a block of time. This is how we tell Ear-
Sketch where to place our audio clips. Click on a measure number to move the
playhead to it.

Audio Clips: If you have added music to the DAW, the DAW should display
some boxes with blue squiggly lines inside. These are audio clips. They provide
a visual representation of the sounds they contain.

Tracks: Every audio clip is placed on a specific track. Tracks are the rows
that run across the DAW; they are numbered on the left. Tracks help you orga-
nize your sounds by instrument-type: for example, in a recording studio you
would record each instrument (vocals, lead guitar, rhythm guitar, bass, drums,
etc.) on a separate track. You can only have one audio clip at a given time on
each track, so having multiple tracks also means you can overlap them.

Effects Toggle: Show or hide the effects added on each track, if you have
any. Note that the effects will still play back; the toggle is just for visuals.

Solo/Mute: Next to each track number, the “S” and “M” stand for solo and
mute. Mute turns off playback for that track, and Solo turns off playback for all
other tracks.

What is Programming?
A computer program is a sequence of instructions that the computer executes,
and that is used to accomplish a specific task or set of tasks. Programming is
the process of designing, writing, testing, debugging, and maintaining the code
of computer programs. This code can be written in a wide variety of computer
programming languages. Some of these languages include Java, C, Python, and
JavaScript.

Programming languages consist of a collection of words and symbols that
the computer can understand, and a syntax for organizing them. You can think
of this like the vocabulary and syntax of spoken language. At the deepest level,
computers operate in combinations of 1s and 0s, or binary. Thankfully we don’t
have to write programs in binary, as it would be very hard for us to understand!
Just as a human might translate from English to French, the computer can
translate human-readable programming languages into binary code.

Computer programs implement algorithms; in other words, a computer pro-
gram describes a set of instructions for a computer to follow.

We can think of the different lines of our code as being individual instruc-
tions that we give to the computer. The computer follows these instructions ex-
plicitly to execute our written code.

Programs are developed for a wide variety of purposes. In EarSketch, our
goal in developing programs is creative musical expression. Computer pro-

CHAPTER 1: Getting Started with EarSketch

20

grams can be built to deal with many kinds of inputs and outputs. In Ear-
Sketch, we focus on creating output in the form of digital audio, which you can
listen to in the browser or save to your computer.

Composing In EarSketch
Now for the fun part: making your own music in EarSketch.

In this section we will familiarize ourselves with the basic way an EarSketch
project is built. To make things easier, we will structure all of our sample
projects in roughly the same way:

1. Comments Section
◦ You can use comments anywhere in your code, but a block at the

top is usually used to describe the whole project.
2. Setup Section

◦ This code tells the DAW how to prepare to make music. init() ini-
tializes, or turns on, the DAW. setTempo() allows you to choose a
tempo for the project.. Every project with music in it must have
these parts in the setup section.

3. Music Section

Getting Started with EarSketch

21

◦ The most important section. All of the details of your composition
go here.

4. Finish Section
◦ Every project must have a finish() function at the end. It tells the

DAW that you are done composing and are ready to play it.

Let’s make our own script using the structure above.
1. To begin, open the Code Editor, and click Options. Select New Script.
This will give you a template to fill in with music. Make sure you are signed

in, then save your script.
Add a script name, your name, and a description in the comments section.

Label your sections with comments, as in the image above. Empty lines don’t
effect how the program runs, so add as many as you need to make space for
each section. The music section will be empty for now.

2. In the template, you’ll see some words that have parentheses after them,
likesetTempo(). These are all functions, and they stand for a set of instruc-
tions to be executed together. Their names are often verbs (initialize, set, finish,
etc.), although this is not required. You can think of them as the verbs of the
programming language. EarSketch comes with many functions to make music
with, and you will also learn to write your own functions. More about this in the
next lesson.

The parentheses after the function name tell the computer to call, meaning
execute, the function with that name. They also provide a space to add argu-
ments. An argument has some effect on the instructions that the function exe-
cutes. Some functions take arguments, some don’t, and some are flexible
about the number of arguments they take. When one function takes multiple
arguments, they are separated by commas like this: myFunction(argument1,
argument2, argument3). The order is important!

The function setTempo() comes with a default argument of 120, but let’s
change it to 100. This sets the tempo of our project to 100 beats per minute. As
you can see, the name of a function tells you what it does.

3. In our music section, let’s call a function named fitMedia() to add
sound to the DAW. fitMedia() requires four arguments: clip name; track num-
ber; starting measure; ending measure. In other words, you tell it the name of
the audio clip you want to add to the DAW, which track to put it on, and which
measures to put it between. For now, just type in fitMedia() without any ar-
guments.

4. Let’s pick some audio clips to add with fitMedia(). Open up the sound
browser, and select the Sounds tab. We’re going to do some instrumentation:
choosing the combination of instruments for a composition. Let’s go with a typ-

CHAPTER 1: Getting Started with EarSketch

22

ical rock instrumentation: drums, bass, and guitar. Search in the sound browser
for clips with ‘drum’ in the name, and find one you like by pressing the play but-
ton next to them. Click your text cursor in the parentheses of fitMedia(), and
use the copy

button (next to the clip you want to add to your song) in the sound browser
to add your chosen clip as an argument. You can also just type it, if you like, but
make sure it is in all-caps! Audio clip names MUST BE IN CAPS.

CAPITALIZATION

Programming languages like JavaScript are case-sensitive, meaning that the com-
puter recognizes the difference between capitalized and uncapitalized letters. my-
function(), myFunction(), MyFunction() and MyFuNction() refer to four completely
different things. This applies to everything you type (except comments), not just
functions. This is a common mistake; check for it if you run into problems.

In addition, the convention for naming things like functions and variables is to
use camel-caps: the first word is lower case, and subsequent words are capitalized,
as in exampleFunctionName()

5. We want the drum clip added to track 1, so the 2nd argument in fitMe-
dia() should be the number 1. Our clip should start on the first measure, so
the 3rd argument is 1. If we want our clip to play for one measure, the end
measure should be 2 (meaning we stop at the beginning of measure 2). So our
4th argument should be 2. Your function should look something like this: fit-
Media(Y01_DRUMS_1, 1, 1, 2).

6. Now we’ll add some bass. We will basically repeat steps 3-5, by adding a
new fitMedia() call on the line below our previous one. In this new fitMe-
dia() , find a bass clip to add as an argument, just like you found the drums.
Clips that are in the same folder in the sound browser are designed to sound
good together, so try to choose clips from the same folder. We can only have
one clip at a time on a given track, so tell fitMedia() that this goes on track 2.
Finally, choose a range of measures to fit the clip into, probably between meas-
ures 1 and 2 like before.

7. Repeat step 6, but add a guitar clip instead of a drum clip. With any luck,
your code looks something like ours below, but with different clips. Press ‘Run',
and then play the music you made!

Getting Started with EarSketch

23

// javascript code
//
// script_name: Opus 1
//
// author: The EarSketch Team
//
// description: A magnificent measure
//
//
//

// Setup Section

init();
setTempo(100);

// Music Section

fitMedia(Y01_DRUMS_1, 1, 1, 2);
fitMedia(Y11_BASS_1, 2, 1, 2);
fitMedia(Y11_GUITAR_1, 3, 1, 2);

// Finish Section

finish();

Why Learn to Program?
When we write computer programs in EarSketch, we use the Python or Java-

Script programming language. You are in JavaScript mode. JavaScript is one of
the ten most popular programming languages in the world. It is primarily used
in web development, but is also widely used for many other purposes such as
game development. Almost every website uses JavaScript, in conjunction with
HTML and CSS, to build the interactions with the user (front-end web develop-
ment). Many also use it to manipulate data on the server side (back-end web
development). Don’t be confused by the name: it is an entirely different lan-
guage than Java!

Programming involves a lot of creativity, so it fits well with making music.
The skills you learn from practicing it can be extremely useful. You’ll learn to
think in both a structured and creative way, which is a valuable combina-
tion. Learning programming also opens the door to many great and lucrative
careers. Nearly every field today uses computer programs. Whether you’re in-
terested in biology, physics, finance, math, robotics, education, making games,

CHAPTER 1: Getting Started with EarSketch

24

graphic design, music, literature, chemistry, or any other field, knowing how to
program will help you to get a great job, succeed, and become more well-
rounded. Most importantly, anyone (incuding you) can learn to program. Like
learning a musical instrument, it takes consistent practice to make progress.
Don’t get discouraged if you get stuck, this is part of the process: ask for help in
your class or look online.

So far, we have learned about what it means to program, and how we can
program to make music in EarSketch. We type code into the code editor panel,
press run, and then play our music in the DAW panel. We can find sound clips to
use in our code in the sound browser, and we refer to them in our code by typ-
ing their name (a constant, in all caps).

We learned that commented code is not executed by the computer, but is
useful to the programmer. Functions are instructions for the computer to take
some action, such as fitMedia() . Some functions take arguments, which
specify exactly what the function should do.

In the next section, we will look at a few more types of data we use in Ear-
Sketch to make music.

Getting Started with EarSketch

25

The Building Blocks of a
Program

Rhythm
When we talk about the rhythm of a song, we are describing how the music
moves through time. Musicians have many words to describe rhythm, includ-
ing: tempo, meter, measure, beat, sub-beat. These are useful in DAWs like Ear-
Sketch because they help you to organize the elements of your music in time.

A beat is the basic unit of time in music. If you have ever clapped along to a
song, you were probably clapping on each beat. So how long does a beat last?
The length depends on the overall speed of the song, called the tempo. Tempo
is measured in beats per minute (bpm). If we are clapping at 60 bpm, then each
beat lasts one second. At 120 bpm, each beat takes half a second. The higher
the bpm, the faster the song, the shorter the duration of each beat.

BEATS, BEATZ, BEETS?

You might have noticed that the word ‘beat’ is used in several ways. The beat de-
scribed above is a unit for measuring musical time.

The other meaning is short for a drum-beat: a repeated rhythmic pattern for a set of
percussive sounds. You can usually tell which kind of ‘beat’ someone is talking
about from the context.

Copy the following code into your code editor, press run, and press play.
Press the loop button to keep the pattern repeating. Try counting ’1, 2, 3, 4',
with one count for each hit of the kick drum. Notice that the timeline starts at
measure 1 and ends at measure 2.

27

2

// javascript code
//
// script_name: Beats
//
// author: The EarSketch Team
//
// description: Counting beats and sub-beats in a measure.
//
//
//

//Setup Section
init();
setTempo(120);

//Music Section
fitMedia(TECHNO_LOOP_PART_002, 1, 1, 2); // Each kick drum hit lasts a quarter note: 1/4 of a measure.

// fitMedia(TECHNO_LOOP_PART_031, 2, 1, 2); // Each cymbal hit lasts a 16th note: 1/16 of a measure.

//Finish Section
finish();

Beats are grouped into measures, with the same number of beats in each
measure. In EarSketch, measures always have four beats. You may have noticed
above that you can clap along to a song in quite a few ways that seem to fit. For
example, if you clap once every 4 beats, you are clapping once every measure.

Often in music, a measure is said to have a duration of a whole-note. If we
have 4 beats in a measure, then each beat is a quarter-note. We can also have
half notes, eighth notes, sixteenth notes, and so on.

What about if you clap twice per beat, or 4 times per beat? We call these divi-
sions of a beat sub-beats. In the previous example, uncomment (delete the //
marks on) line 19 and run the code again to hear the sub-beats in the hi-hat
(cymbal) part. The hi-hat cymbal plays 16 times per measure: each one is a 16th
note long.

CHAPTER 2: The Building Blocks of a Program

28

FIGURE 2-1

Data Types
Computers store and process information, and we call this set of information
data. It’s useful to know what kinds of data you can put in a program. If we
think of a program as a recipe, then the data types are the kinds of ingredients
you can use. For example, some common ingredient types are vegetables,
meats, herbs. Paints, on the other hand, are not a valid ingredient type (in nor-
mal restaurants). The same goes for programming languages: they can only
work with certain kinds of data. The basic data types that most programming
languages can understand are:

• Numbers
• Strings
• Variables
• Constants
• Functions
• Arrays

Everything you build in EarSketch will involve some combination of these. In
the following section we will focus on using numbers, variables, and constants
to make music in EarSketch.

Numbers

The fundamental data type in computing is the number. At a deeper (or “low-
er”) level, everything in a computer is encoded as a binary number. At a higher
level, where we will be working, numbers are great for describing rhythm to the
computer. Think of how we verbally described rhythm in the previous section:
as numbers of measures, beats, and sub-beats. Every EarSketch script must in-
clude a setTempo() function, with some number in the parentheses. This tells

The Building Blocks of a Program

29

the computer how fast to playback the music. Try changing this number your-
self, in the example below, and listen to it (press the loop button again).

// javascript code
//
// script_name: Beats
//
// author: The EarSketch Team
//
// description: Counting beats and sub-beats in a measure.
//
//
//

//Setup Section
init();
setTempo(120);

//Music Section
fitMedia(TECHNO_LOOP_PART_002, 1, 1, 2); // Each kick drum hit lasts a quarter note: 1/4 of a measure.

// fitMedia(TECHNO_LOOP_PART_031, 2, 1, 2); // Each cymbal hit lasts a 16th note: 1/16 of a measure.

//Finish Section
finish();

TYPES OF NUMBERS: FLOATS AND INTS

There are often multiple types of numbers in programming languages, the most
common being integer and floating point.

Integers (often abbreviated as “int”) are positive or negative whole numbers, in-
cluding 0: for example, -23.

Floating point (or “float”) numbers are positive and negative numbers with a deci-
mal (or fractional) component. In other words, rational numbers. For exam-
ple: 3.14159, or -21.0. All values of the number type in JavaScript are stored as
floats, so the integer 10 is stored as 10.0.

Variables

In EarSketch, we are doing Algorithmic Composition. This is like writing up
musical recipes, which the computer will then cook up to produce a delicious

CHAPTER 2: The Building Blocks of a Program

30

piece of music. When making a recipe, we might want to try adding different
amounts of our ingredients. For example, 1 vs. 2 cups of butter. Values like this
that can change are called variables. In cooking, your variables might be called
temperature, timeInOven, or amountOfButter. To set the temperature, you
could write temperature = 400. In EarSketch, variables are often used to
hold musical values, like measureNumber or trackNumber.

VARIABLES AND MEMORY

A variable creates a space in the computer’s memory to store something. What
makes them useful is that you can change what they store.

In math, a variable usually represents a number. In a programming language, vari-
ables can represent almost anything, including numbers and clip names.

track = 1 creates a variable named “track”, and assigns the number 1 to it. If we
wrote fitMedia(Y_11_BASS_1, track, 1, 5) in the same program, it would be inter-
preted as fitMedia(Y_11_BASS_1, 1, 1, 5) . If we wanted our clip to be added to
track 2 instead, we could simply type track = 2 above our fitMedia() call.

How can we use this to make music? Take a look at the example below and
try to figure out what is happening.

// javascript code
//
// script_name: Variables
//
// author: The EarSketch Team
//
// description: Using variables to store measure numbers
//
//
//

// Setup
init();
setTempo(80);

// Music
var startMeasure = 1; // Here, we assign number values
var endMeasure = startMeasure+2; // to our variables.

fitMedia(HIPHOP_DUSTYGROOVE_001, 1, startMeasure, endMeasure); // Now we can use our variables instead of typing measure numbers

The Building Blocks of a Program

31

fitMedia(HIPHOP_DUSTYCOINLEAD_002, 2, startMeasure, endMeasure);

// Finish
finish();

We created 2 variables, startMeasure and endMeasure, and assigned val-
ues to them using the assignment operator: =. Notice how endMeasure’s value
depends on startMeasure’s.

We could have named our 2 variables x and y, or almost any other name you
can imagine, and the program would have run exactly the same. However,
names like x and y don’t tell us anything about what the values they store are
being used for, so it makes the code much less human-readable.

Try to add another set of clips after the current last measure, using variables
as arguments. There are many approaches to this. When you’re done, take a
look at our solution below.

// javascript code
//
// script_name: Variables (continued)
//
// author: The EarSketch Team
//
// description: Using variables to store measure numbers
//
//
//

// Setup
init();
setTempo(80);

// Music
var startMeasure = 1; // Here, we assign values to our variables.
var endMeasure = startMeasure + 2;

fitMedia(HIPHOP_DUSTYGROOVE_001, 1, startMeasure, endMeasure); // This adds music in measures 1 to 3, on track 1
fitMedia(HIPHOP_DUSTYCOINLEAD_002, 2, startMeasure, endMeasure); // Measures 1 to 3 (track 2)
fitMedia(HIPHOP_DUSTYGROOVE_001, 1, endMeasure, endMeasure + 2); // Measures 3 to 5 (track 1)
fitMedia(HIPHOP_DUSTYCOINLEAD_002, 2, endMeasure, endMeasure + 2); // Measures 3 to 5 (track 2)

// Finish
finish();

CHAPTER 2: The Building Blocks of a Program

32

In summary, variables are used to store a value, and to name it. This value
can be of any data type. They tell the computer to create a space in its memory
for a value to be stored, and they give a name to that space so it can easily be
referred to. You pick the name and the value. We could technically use a vari-
able called measureNumber to set the tempo or any other value, but that would
be pointless and confusing. Give your variables names that describe what they
will be storing.

Continually editing and evaluating your work is important in both music-
making and programming. This is called iterative design. In EarSketch, we do
this by listening to our music, editing the code, listening to our changes, edit-
ing, and so on. Variables help us generalize parts of our code, which makes edit-
ing easier. For example, we can quickly swap out different clips to see what they
sound like in our song, even if they are used in many different places in the
song.

Constants

A constant stores values that never change. In EarSketch, they are used to refer
to audio files, which you can add to your project. The “value” that these con-
stants refer to is the address for a specific sample. If we changed this value, the
name wouldn’t correspond with the correct sample anymore. So we don’t
change them. By convention, their names are capitalized.

TECHNO_SYNTHPLUCK_001 is a constant. It refers to an audio file that can
be used within an EarSketch project. The actual audio file is located on the Ear-
Sketch server. Its unique location on the server is described by a file path (for
example, C:/Program Files/EarSketch would specify the EarSketch program be-
ing located in the Program Files folder located on the C drive). A file path for an
audio file can thus be a complicated way to refer to the file. But EarSketch as-
signs that long file path to a single value that never changes: a constant.

The name of the data type explains it all: the value of a variable varies, and
the value of a constant stays constant.

The Building Blocks of a Program

33

The Core EarSketch Functions

The EarSketch API has many functions to help you compose music. A complete
description of each one can be found in EarSketch API document, which you
can find in the API tab of the Sound Browser. We have already looked at fitMe-
dia(), which lets you add audio clips to the DAW. In this section, we will learn
to use the two other main EarSketch functions: setEffect(), and make-
Beat().

Effects
With fitMedia() we focused on composing music by arranging different audio
clips in the DAW. As a composer and producer, you’ll also want to not only pay
attention to the order and arrangement of clips in your project, but also the
characteristics of those sounds. One way to change the quality of these sounds
in your project is by adding effects. Audio effects are analogous to photo filters.
They manipulate the audio to varying degrees. Listen to this reference clip with
no effects, and then compare it with the clip below that has a distortion effect
applied:

No effect:
audioMedia/reference.mp3

Distortion effect:
audioMedia/distortion2.mp3

To add an effect to a track in our DAW, we use the function setEffect(). As
we experiment with effects in this section, we will hear how the sound changes
as different effects are applied to it. Below, our code adds a delay effect to
track 1:

// javascript code
//
// script_name: Effects-Delay
//
// author: The EarSketch Team
//

35

3

// description: A track with delay effects
//
//
//

//Setup

init();
setTempo(120);

//Music

fitMedia(DUBSTEP_LEAD_003, 1, 1, 13);

setEffect(1, DELAY, DELAY_TIME, 500); // Adds a delay (echo) effect, at intervals of 500ms

//Finish

finish();

A delay effect plays back the original audio as well as a delayed, quieter ver-
sion of the original that sounds like an echo. After the first echo it plays an echo
of the echo (even quieter), then an echo of the echo of the echo (still quieter),
and so on until the echo dies out to nothing.

With the delay effect, we can control how much time passes between each
echo (delay time). If we set the delay time to match the length of a beat, or
some division of the beat, we can create rhythmic effects with delay. In our ex-
ample, each delayed version of the original clip comes in 500 milliseconds after
the previous one. How did we get this number? It is equal to one beat. Our tem-
po is 120 beats per minute, and since there are 60 seconds in a minute, we have
60 seconds per 120 beats. Simplified, this gives us 60 seconds/120 beats = 0.5
seconds per beat. This is the length of each beat at 120bpm. So we can set our
delay time to this length, but we need to convert it to milliseconds. If 1 second =
1000 milliseconds, then 0.5 seconds = 500 milliseconds, which is the delay time
we pass to setEffect() .

For a challenge, try coding this calculation of beat length in your script. The
equation is: (60/tempo) x 1000 = one beat in milliseconds.

setEffect
How does setEffect() work? Similarly to fitMedia(): it takes 4 arguments
that specify what exactly it does. You can think of the arguments as settings.
With setEffect(), our arguments are:

CHAPTER 3: The Core EarSketch Functions

36

1. Track Number: The effect is added to this track.
2. Effect Name: This is the specific effect being used.
3. Effect Parameter: Each effect has several settings of its own, so you’ll

have to choose which one you want to set. Note that you can set multiple
parameters on a single effect, in combination.

4. Effect Value: Effect parameters usually accept a range of numbers, so you
can set that here. For example, if your effect is volume then this specifies
how loud or quiet to make the track.

Let’s use setEffect to mix a composition. In music production, mixing is the
process of balancing multiple audio tracks so that they sound cohesive when
played together. You can do this in EarSketch by using effects.

In the code below, we assigned several audio clips (constants) to variables.
We then use these variables in a number of fitMedia(): calls. Notice how we
organized our fitMedia() calls by track number, to make it easier to read. Run
the code and have a listen:

// javascript code
//
// script_name: Techno Mix
//
// author: The EarSketch Team
//
// description: Mixing by adjusting volume with setEffect.
//
//
//

//Setup

init();
setTempo(120);

//Music

var introLead = TECHNO_ACIDBASS_002; // Store clips in variables
var mainLead1 = TECHNO_ACIDBASS_003;
var mainLead2 = TECHNO_ACIDBASS_005;
var auxDrums1 = TECHNO_LOOP_PART_025;
var auxDrums2 = TECHNO_LOOP_PART_030;
var mainDrums = TECHNO_MAINLOOP_019;
var bass = TECHNO_SUBBASS_002;

fitMedia(introLead, 1, 1, 5); // Add clips to DAW
fitMedia(mainLead1, 1, 5, 9);
fitMedia(mainLead2, 1, 9, 17);

fitMedia(auxDrums1, 2, 3, 5);

The Core EarSketch Functions

37

fitMedia(auxDrums2, 2, 5, 8);
fitMedia(auxDrums2, 2, 9, 17);

fitMedia(mainDrums, 3, 5, 8);
fitMedia(mainDrums, 3, 9, 17);

fitMedia(bass, 4, 9, 17);

//Effects

// setEffect(3, VOLUME, GAIN, 10.0); // Adding different volume gain to each track (mixing)
// setEffect(4, VOLUME, GAIN, 12.0);

//Finish

finish();

It sounds good, but if we wanted to DJ with this we would probably want a
more powerful drum and bass section. Those instruments contribute heavily to
the rhythmic feel of the music, which is important for dancing. We currently
have the main drums and bass in tracks 3 and 4. Let’s turn the volume up on
those tracks by uncommenting the setEffect calls in the effects section. Delete
the // characters in front of both setEffect calls, run the script, and press
play to hear the difference.

EarSketch supports a variety of effects that are common in music produc-
tion. For a complete list of the effects and how to use them, see Chapter 16.

Making Custom Beats
fitMedia() allows us to make music out of audio loops. There are many great
possibilities when using fitMedia(), but when we want to make music (and
particularly drum beats) note by note, we’ll want another tool. makeBeat() is
EarSketch’s function for this: instead of composing at the measure-level, we can
work at the note-level. In music production, this approach is often called step
sequencing and is done with a drum machine or a groove box (see the image
below). In EarSketch, makeBeat() gives us a powerful way to do step sequenc-
ing.

CHAPTER 3: The Core EarSketch Functions

38

FIGURE 3-1

A Roland TR-808
drum machine.

Strings

To use makeBeat() , we first need to understand the string data type. In Java-
Script, a string is a series of characters with quotation marks around it, like
"Hello World!" or "This is test sentence #1". Single or double-
quotes are both fine. Strings are often used in programming to represent non-
numerical data such as words, but you can also have numerical characters in
strings. For example, when you type your address into a website, it probably
starts by saving it as a string. That string contains several types of characters:
numbers, spaces, letters, punctuation marks: "123 Fake St."

Note that 5 and "5" mean very different things to the computer: 5 is a num-
ber that it can do math with, while math operations usually* won’t work with
the string "5". Just like with numbers (and other types of data), strings can be
assigned to variables: address = "123 Fake St."

We use strings with the makeBeat() function to define rhythmic patterns,
which we call beat patterns.

*In some cases, the language will automatically convert it to the correct type for arithmetic,

but you should not rely on this.

The Core EarSketch Functions

39

Beat Patterns with Strings

Beat patterns in EarSketch use strings to refer to sub-beats of a measure in or-
der to place clips at specific places in the measure, as well as define the clip’s
play length, all at once. Here’s an example of a beat pattern using a string, as-
signed to a variable called myDrumBeat:

myDrumBeat = “0-00-00-0+++0+0+”
Every character stands for one sixteenth-note sub-beat of a measure.

• 0 starts playing the clip.
• - is a rest, meaning that there’s nothing being played.
• + extends the audio clip into the next sixteenth-note sub-beat, so it

should always follows either a 0 or a +.

Going from left to right, the above beat string is telling EarSketch that it
should:

0 play the clip for one sixteenth of a measure

- rest for one sixteenth

0 play for one sixteenth

0 play for one sixteenth again

- rest for one sixteenth

0 play for one sixteenth

0 play for one sixteenth again

- rest for one sixteenth

0+++ play the clip for four sixteenths (or one quarter)

0+ play for two sixteenths (or one eighth)

0+ play for two sixteenths (or one eighth)

It should be noted that although a 16-character beat string does comprise a

measure, beat strings do not have to be this length. For example, if you want a

CHAPTER 3: The Core EarSketch Functions

40

cymbal crash that lasts for one beat, the beat string "0+++" is perfectly accept-
able.

Take another look at the image of the Roland TR-808 drum machine above.
Do you see anything in common with makeBeat() strings? The 16 colorful but-
tons work much like a makeBeat() string! The machine reads through all 16
from left to right, only making a sound for the ones that have been pressed
down. Each depressed button on that machine works like a 0 in a beat string.

makeBeat

Now we are ready to use makeBeat() . Like our other functions, make-
Beat() also takes four arguments:

1. Clip Name
2. Track Number
3. Measure Number: note that it only requires a starting measure, as the

length of the string determines where the end measure will be.
4. Beat String

Starting with an empty script, try to add your own makeBeat call, and add it
to measure 1 in track 1. You will have to choose your own clip, and make a beat
string. The EarSketch Sound Browser contains a type of clip designed for use
with makeBeat: one-shots. These are typically the length of one drum hit. You
can browse them by clicking “Artists”, then “MAKEBEAT”. Compare your script
with ours below:

// javascript code
//
// script_name: Simple Beat
//
// author: The EarSketch Team
//
// description: Making a rhythm with makeBeat and a string
//
//
//

//Setup

init();
setTempo(120);

//Music

makeBeat(DUBSTEP_FILTERCHORD_002, 1, 1, '0--0--000--00-0-');

The Core EarSketch Functions

41

//Finish

finish();

This only adds one instance of our beat string to the DAW. Try calling make-
Beat several times (with different measure number arguments) to repeat your
pattern. You could even add a complementary rhythm on a new track, like this:

// javascript code
//
// script_name: Multi Beat
//
// author: The EarSketch Team
//
// description: Using several makeBeat calls, and overlapping rhythms
//
//
//

//Setup

init();
setTempo(120);

//Music

makeBeat(DUBSTEP_FILTERCHORD_002, 1, 1, "0--0--000--00-0-");
makeBeat(DUBSTEP_FILTERCHORD_002, 1, 2, "0--0--000--00-0-");
makeBeat(DUBSTEP_FILTERCHORD_002, 1, 3, "0--0--000--00-0-");

makeBeat(OS_CLOSEDHAT01, 2, 1, "-00-00+++00--0-0");
makeBeat(OS_CLOSEDHAT01, 2, 2, "-00-00+++00--0-0");
makeBeat(OS_CLOSEDHAT01, 2, 3, "0--0-00--00--000"); // This rhythm gives us some variety

//Finish

finish();

CHAPTER 3: The Core EarSketch Functions

42

Debugging

What is Debugging?
As a programmer, you will make many mistakes that will cause your code to
work incorrectly, or not run at all. This is common: even the most experienced
of programmers make mistakes! These mistakes are called errors or bugs. The
process of finding and fixing these is called debugging.

There are 3 types of errors you will encounter while programming:

1. Syntax errors: Your program doesn’t run, because your code does not
follow the syntax rules that JavaScript requires to interpret your code.
The syntax of a programming language is like the grammar of a spoken
language: it is a set of rules of how to combine its symbols. For example,
every open parenthesis (must eventually be followed by a closing one).

2. Runtime errors: Your program starts to run, but halts because of an er-
ror.

3. Logic errors: Your program runs, but it doesn’t do what you expected it
to do.

There are many ways to debug a program depending on the kind of code
you are writing and your development environment. In EarSketch, you can usu-
ally catch logic errors by looking at the DAW: you can see if the clips you meant
to add were actually added in the right places. For syntax and runtime errors
where we don’t get to see anything in the DAW, we will use print debugging.
Print debugging uses the println function to send messages to the console.

Using the Console
The console is used to get information about the state of a program as it runs.
The state refers to what the memory of your computer is holding as it runs the
program.

The program is changing what is stored in the memory as each statement of
your code is executed, which is another way of saying the state changes. You

43

4

might think of the memory as the collection of every variable in your program;
these variables might hold different numbers or strings throughout the execu-
tion of your program.

All good software development environments (also called Integrated Devel-
opment Environments, or IDEs) have some kind of console.

Let’s practice using the console. Make sure your console is open: it should be
at the bottom of your window. Now try running a script with just one fitMedia
call, as well as the usual ‘Setup’ and ‘Finish’ sections. If all goes well, the con-
sole should display something like this:

EarSketch Client Beta V 2.77
Running script ...

The console has displayed three things: it tells us which version of EarSketch

we are running (2.77), that it is indeed running our script, that it has finished
running, and which audio files it has loaded into the DAW.

It looks like all of these appeared in the console at the same time, but that is
because the computer runs quickly. If we were to step through our program line
by line, we would see them appearing one at a time.

If EarSketch encounters an error while running your code, the console will
display information about what caused that error. See if you can spot the error
in this script:

// javascript code
//
// script_name: Error Script
//
// author: The EarSketch Team
//
// description: This script causes an error... check the console
//
//
//

//Setup
init();
setTempo(120);

//Music
makeBeat(OS_CLAP01, 1, 1, "0--0++0-);

//Finish
finish();

CHAPTER 4: Debugging

44

Now, run the above code. The console should tell you something like this:

EarSketch Client Beta V 2.77
Running script ...
ERROR: ParseError: bad token on line 17
You don’t need to know what ‘ParseError' or ‘bad token' mean. Just note

that it says ‘ERROR' and points to ‘line 17’. We forgot to add a closing quotation
mark to the right of the beat string on line 17, a common kind of error.

You don’t need to know what ‘ParseError' or ‘bad token' mean. Just note
that it says ‘ERROR' and points to ‘line 19’. We forgot to add a closing quotation
mark to the right of the beat string on line 19, a common kind of error.

Printing in the Console
Printing to a console is useful for learning about the state of your program.
Rather than only getting certain information from the console (as in the exam-
ple above), you can tell it to print exactly what you want at any point in the pro-
gram.

The println() function tells the console to display something. This “some-
thing” can be any kind of data: a string, numbers, the value a variable is hold-
ing, etc. The argument is the data that you want to be printed. println() will
evaluate the argument, and print the final value. Evaluating means showing
the statement in its most basic form. For example, 2+2 is evaluated as 4; a vari-
able x (holding the number 4) is evaluated as 4. The syntax is the same as with
other functions in JavaScript:

println('String to be printed');
This would display String to be Printed in the console.
Run the following code in a new tab:

// javascript code
//
// script_name: Printing Demo
//
// author: The EarSketch Team
//
// description: Using println to print messages in the console
//
//
//

//Setup
init();
 // (We don't need setTempo here, since there's no music)

Debugging

45

//Printing
println(3 * 4); //Prints the result of 3*4: 12

var x = 3 * 4;
println(x); //Prints the value of x, which is also 3*4, on the next line in the console

var y = 2;
println(x / y); //Evaluates x/y, then prints it on the next line

//Finish
finish();

Take a look at the console. You can see how the computer is evaluating the
arguments you give to println() , in the order they were called.

 println() doesn’t need an argument that evaluates to a number; it works
with any data type. With the println() function, you can not only find errors,
but also gain a better understanding of how your program is running.

The Debugging Process
You can use printing, commenting, and the console to find errors in your code.
As your program gets larger, it can become increasingly difficult to find the
source of error, so it helps to have some strategies in case you get stuck. Try
following these steps if you run into an error:

Reproduce the error:

Run your code. In EarSketch you should get the same error every time you run
the same code, so that will be enough to reproduce the error. However, one ex-
ception to this is when using random number generators (covered later in the
curriculum), where only certain values will cause errors.

In other programming environments there may be other inputs that only oc-
casionally cause your program to throw an error, so you would also need to fig-
ure out the kind of input that is causing errors.

Read the console for clues:

The console will often tell you which line of code caused the error, and what
type of error it is.

Locate the error in your code:

If the console provided a line number, take a look at that line in your code.

CHAPTER 4: Debugging

46

A useful strategy for checking if a line (or group of lines) in your code is caus-
ing an error is to comment out that code. This disables that part of your code
from running. If your code works fine without it, then you’ve found the bug.
We’ve seen single-line comments, but you can also create multi-line com-
ments by surrounding the lines of code you want to comment with these sym-
bols: /* */

QUICK COMMENTING

You can quickly comment or uncomment code by clicking on a line (or highlighting
multiple lines), then using these keyboard shortcuts:

Mac: Command + /

Windows: Control + /

Another useful strategy is to get the state of your program by printing. The
goal is to ensure you understand the state of the program that is causing the
error, and printing can reveal the state. Read through the problem section of
your code, and try to follow the logic. Think about which variables are being as-
signed which values, and make sure those are valid values. Insert print state-
ments where you are unsure of the logic, getting the value of certain variables
at those points. In this way, you can check your understanding of the program
against what is actually happening in it.

If the console gives you no clues about the location of your error, you may
have to take educated guesses at what is causing the error. Walk through the
sections of your code, making sure the program flow makes sense. If you are
uncertain about a section, go through it line by line, just like the computer
reads it. Insert print statements along the way, to check the program’s state.

As your program grows, this process can become increasingly complex. An
error might be caused by several interacting lines of code in different parts of
your script.

Squash the bug:

You might immediately recognize the problem and be able to fix it. Hooray! In
the likely case that you don’t see the problem, check for syntax errors. This
often involves closing parentheses, quotations, or brackets. Other common er-
rors include spelling function or variable names wrong (including incorrect cap-
italization), adding media to the wrong measure number, and counting to the

Debugging

47

wrong number in a loop index (you’ll learn about loops in the next section). Edit
the offending code, and try running it to see if it works.

Ask for help:

It can be a good learning experience to try to solve a problem on your own for a
bit, but if you find you have spent too much time on a bug then by all means
ask someone for help! Vast swaths of the internet are dedicated to helping pro-
grammers debug their code (nice to know you’re not the only one), so you can
usually find answers there. Better yet, ask a teacher or a classmate. A fresh pair
of eyes can do wonders for spotting mistakes.

CHAPTER 4: Debugging

48

Looping

Repetition in Music and Technology
Almost all music uses repetition. Repetition makes things more familiar for the
listener: you hear something again that you already know.

For instance, a drummer might repeat a series of rhythms many times to
form a drum beat. A band will often play certain parts of a song more than once,
such as the chorus. So, you can repeat things on many levels in music: from
small amounts of time (a few hits of a drum) to longer durations (entire sections
of a song). Technology makes repetition easy. With guitars, a loop pedal can be
used to record a sample of your playing, and then plays it back over and over
again. Computers also happen to be very good at repetition.

In music notation, you can use a repeat sign that tells the performer to play
a measure again.

Notation like this is efficient: you avoid writing the same measure over and
over again. Similarly, programming languages have a notation that tells the
computer to execute a section of code repeatedly. This repetition is called loop-
ing. In JavaScript it looks something like this:

for (var i = 0; i < 2; i++) {

49

5

 //Repeat any code in here (between the {} curly braces) several times.

}

A Loop Example
In EarSketch, we’ve been creating repetition in our music by simply typing fit-
Media() or makeBeat() again and again, with different measure numbers:

// javascript code
//
// script_name: Drum beat (no loops)
//
// author: The EarSketch Team
//
// description: Musical repetition created without code loops
//
//
//

//Setup
init();
setTempo(120);

//Music
var beat = "0-00+00-0+++0+0+";
var drum = ELECTRO_DRUM_MAIN_BEAT_008;

// All of these makeBeat calls could be replaced with a single one placed in a loop

makeBeat(drum, 1, 1, beat);
makeBeat(drum, 1, 2, beat);
makeBeat(drum, 1, 3, beat);
makeBeat(drum, 1, 4, beat);
makeBeat(drum, 1, 5, beat);
makeBeat(drum, 1, 6, beat);
makeBeat(drum, 1, 7, beat);
makeBeat(drum, 1, 8, beat);

//Finish
finish();

CHAPTER 5: Looping

50

There is a better way to code: we can write this more concisely by using a
loop. There are several kinds of loops, but we’ll be learning about the for-loop.
The code below creates the same music as the code above, using fewer lines of
code.

// javascript code
//
// script_name: Drum beat (with loops)
//
// author: The EarSketch Team
//
// description: Musical repetition created with code loops
//
//
//

//Setup
init();
setTempo(120);

//Music
var beat = "0-00-00-0+++0+0+";
var drum = ELECTRO_DRUM_MAIN_BEAT_008;

// Using a loop instead of repeatedly writing similar lines of code. Much better!

for (var measure = 1; measure < 9; measure = measure + 1) {
 makeBeat(drum, 1, measure, beat);
}

//Finish
finish();

The code says “execute this statement several times, and increase the meas-
ure number each time." Each repetition of the code is called an iteration. If we
didn’t increase the measure number on each iteration, makeBeat()would keep
adding clips to the same location, and the loop would be pointless.

Writing a loop is much faster than writing each statement out; imagine if we
wanted to repeat this drum beat 1000 times! This demonstrates one of the main
benefits of using coding for music: music often uses plenty of repetition, and
coding allows you to repeat yourself very efficiently. Instead of writing 1000

Looping

51

lines of code, we can accomplish the same with only two or three. Let’s look at
the details of how loops work, so you can write your own.

Components of a For Loop
For-loops in JavaScript consist of 4 basic parts:

• Loop Body: The body of a loop contains the statements that you want to
be executed repeatedly. It includes everything surrounded by the curly
brackets { }. You can loop as many statements as you like (you can
even loop loops!).

• Initialization: Creates a variable to be used as a loop counter. A simple
loop counter holds the current count of how many times we have looped
through our code, so we don’t loop forever (an infinite loop is a good
way to crash a program!). We named it measure here, but you can name
it anything reasonable you would like.

• Iteration Statement: This is how we update our loop counter, so it
changes on each iteration (often by counting up). measure++ is a short-
cut for writing measure = measure + 1

• Loop Condition: This checks whether the loop should run again. If the
statement is true, we keep looping. If the counter gets too high here, the
statement will be false, and we exit the loop. The computer then contin-
ues executing code after the loop.

CODE BLOCKS: { }

A code block in JavaScript is simply a group of statements (one or more lines of
code) that are meant to be run together. It is shown by placing curly brack-

CHAPTER 5: Looping

52

ets { } around the statements. Control flow structures like for-loops use this nota-
tion to show which code will be looped.

Later, we will see that Conditionals also use this notation.

INDENTATION

Indentation in JavaScript does not affect how your code is executed; however,
it is very important for keeping it human-readable. As a convention, all of the
statements inside the body of a for-loop should have the same level of indenta-
tion: one more tab than the level of indentation the first line has.

We will see some other structures later, such as Conditionals, which also use
this kind of indentation.

A loop is a control flow statement. Control flow is the order that the com-
puter reads and executes code in. Up until now, the computer has executed our
code sequentially (top to bottom, line by line), just like you would read a page
of text. However, we can use statements like loops in our code to change the
reading order: at the end of the loop code, it jumps back to the top of the loop.

Following the Control Flow
Let’s walk through a code example that uses a loop, and follow the control flow
from the beginning. Take another look at this example from above:

// javascript code
//
// script_name: Drum beat (with loops)
//
// author: The EarSketch Team
//
// description: Musical repetition created with code loops
//
//
//

//Setup

Looping

53

init();
setTempo(120);

//Music
var beat = "0-00-00-0+++0+0+";
var drum = ELECTRO_DRUM_MAIN_BEAT_008;

// Using a loop instead of repeatedly writing similar lines of code. Much better!

for (var measure = 1; measure < 9; measure = measure + 1) {
 makeBeat(drum, 1, measure, beat);
}

//Finish
finish();

The interpreter is the part of JavaScript that reads and executes our code. It
starts at line 1, and goes down line by line unless we tell it to do otherwise.
Lines 1-12 are either comments or empty, so it skips those. Lines 13-21 are exe-
cuted in top-to-bottom order (again skipping commented or empty lines).

Things get interesting at line 22. We’ve reached our for-loop! This tells the
interpreter that we will be repeating a block of code: our loop body.

On line 22, the measure variable (our loop counter) is assigned the number
1. Then, the loop condition is checked (is measure less than 9?). measure is in-
deed less than 9, which tells the interpreter that we should move into the loop
body (inside of the brackets).

Since measure is currently 1, it executes makeBeat(drum, 1, 1, beat).
Once this line has finished, we have reached the end of our loop body, so we
jump back up to line 22.

The increment statement measure = measure + 1 is now applied, making
measure equal 2. We check again if measure is less than 9; it is, so we move into
the loop body again. Since measure is currently 2, it executes makeBeat(drum,
1, 2, beat).

This looping process repeats until after measure is assigned to 9. At this
point, measure is not less than 9 (meaning our loop condition is not met), so
control jumps down to line 25, and continues to the bottom of our script in reg-
ular top-to-bottom order.

CHAPTER 5: Looping

54

INCREMENTING AND DECREMENTING

In for-loops, we need to increment (or sometimes decrement) a counter. We wrote
this above as measure = measure + 1, but there is an easier way.

• measure++

◦ This adds 1 to measure’s current value. It has the exact same mean-
ing as measure = measure + 1, but is faster to write. You will see
this often.

• measure--

◦ This subtracts 1 from measure’s current value.

What if we want to increment/decrement by a different number than 1?

We can use += or -=. For example:

• measure += 2

◦ This adds 2 to measure’s current value. It is exactly the same as
measure = measure + 2. You can also do measure += 3 to in-
crement by 3, or any number you want.

• measure -= 2

◦ This subtracts 2 from measure. You can also decrement by any
number you want.

Repeatedly adding beats or media to our project, as above, is just one of

many possible uses for for-loops in EarSketch. In the following example we use
two loops to add some clips and beats to the DAW, just as we saw before. How-
ever, we also use a third loop to add a panning effect on each track. If you have
headphones available, use them to listen to this script (they will make the pan-
ning effect more noticeable):

// javascript code
//
// script_name: Panning Loop
//
// author: The EarSketch Team
//
// description: Adding music with loops; panning incrementally with loops
//

Looping

55

//
//

//Setup
init();
setTempo(130);

//Music
var drums1 = OS_KICK01;
var drums2 = HIPHOP_TRAPHOP_BEAT_001;
var drums3 = OS_LOWTOM03;
var synth1 = DUBSTEP_FILTERCHORD_002;
var synth2 = Y02_KEYS_1;
var guitar1 = Y09_WAH_GUITAR_1;
var guitar2 = Y61_WAH_GUITAR_1;

for (var measure = 1; measure < 5; measure++) { //Add music to measures 1 through 4
 makeBeat(drums1, 1, measure, '0++-++00');
 makeBeat(drums2, 3, measure + 0.5, '0++0++++');
 fitMedia(synth1, 2, measure, measure + 1);
}

for (var measure = 5; measure < 9; measure++) { //Add music to measures 5 through 8
 makeBeat(drums1, 1, measure, '0+++0+-0');
 makeBeat(drums3, 3, measure + 0.5, '00-00+00');
 fitMedia(synth2, 2, measure, measure + 1);
}

for (var track = 1; track < 6; track++) { //Add panning effects to all tracks (1-5)
 panAmount = ((track-1) * 50) - 100;
 setEffect(track, PAN, LEFT_RIGHT, panAmount);
}

fitMedia(guitar1, 4, 1, 9); // Add a few extra tracks to measures 1 through 8
fitMedia(guitar2, 5, 1, 9);

//Finish
finish();

There are three for-loops. Let’s walk through the first one line-by-line:
Line 26: Creates a variable named measure, and assigns it the value 1. This

is our loop counter. Checks if measure ’s value is less than 5. It is, so the pro-
gram moves into the loop body.

Line 27: Adds a beat to the first half of the current measure (which is 1).

CHAPTER 5: Looping

56

Line 28: Adds a different beat to measure + 0.5 (the second half of the
measure).

Line 29: Adds a clip to the current measure .
Line 30: At the end of the body, the iteration statement runs: measure++ .

measure now equals 2. Control jumps back to the top of the loop.
Line 26: Checks if measure ’s value is less than 5.measure equals 2, so we

loop again.
Lines 27-29: Same as before, but our measure numbers have increased. We

add clips to the next measure.
Line 30: measure++ runs again, so measure equals 3. Back to the top...
...a few iterations later...
Line 30: measure++ runs again, so measure equals 5. Back to the top...
Line 26: measure is NOT less than 5, so the program exits the loop, moving

onto line 18.

The second loop (lines 32-36) is similar, but starts the measure counter at 5,
so the loop adds clips to measures 5-8.

The third loop (lines 38-41) is used to add a panning effect to all of the
tracks. Panning changes the amount of audio that each speaker outputs (this
also applies to headphones). As the track loop counter increases, so does the
amount of pan applied.

Try commenting out that entire loop to hear the difference.

Loops tell the computer to do something repeatedly. Just like in music, you
can specify how many times a repetition takes place. This simple concept turns
out to be extremely versatile. We used loops to add clips to different measures,
and to add effects to different tracks. There are many other possibilities; see if
you can find your own use for them. Remember that the loop counter does
much more than count: it changes the values of variables in your loop on each
iteration.

Looping

57

Making Decisions

Musical Repetition vs. Contrast
With looping, we focused on adding repetition to our music. Most music, how-
ever, involves a balance between repetition and contrast. Contrast gives the lis-
tener something new and unfamiliar. This can be exciting to hear, and helps to
drive the music forward. In this section, we will learn to make musical contrast
with code, using conditional statements.

Conditional Statements: if...then
Conditional Statements make a decision: to run code or not to run code. They
contain a block of code that will only be executed if a condition is met. They can
be written in this form: “if [this condition] is true, then do [this action]”. We use
this kind of logic constantly in everyday life. For example, a recipe might tell
you the following:

1. Put cookies in oven.
2. If cookies are brown around edges, then remove them from oven.
3. Let cookies cool before devouring.

Can you spot the conditional statement here? It is step 2. We have the condi-
tion “cookies are brown around edges" and an action to take if this condition is
true: “remove them from oven”. Both parts make up a conditional statement.

CONDITIONS AND BOOLEANS

A condition is an expression that can be either true or false. This true/false value is
held by a data type called a Boolean. Think of how it compares to our other data

59

6

types... the ‘number’ data type has many possible values (1, 2, 3, 4...). Boolean has
only two possible values: true or false.

We have already used conditions and Booleans in for-loops: the condition decided
whether our code should run again or stop looping. For example, measure < 5 is a
condition, which could be true or false depending on measure’s value. If measure is
6, for example, then measure < 5 equals true .

Below, we replace our cookie condition with a more generic one.

// javascript code
//
// script_name: Conditionals
//
// author: The EarSketch Team
//
// description: Change the value of x to see how it affects the conditional statement
//
//
//

//Setup
init();
setTempo(120);

//Conditionals

var x = false; // Assigns the Boolean value "false" to a variable

if (x) { // Checks if x is true or false. It is false, so the code block below is not executed.

 println("The condition is true!");

 fitMedia(YG_NEW_HIP_HOP_ARP_1, 1, 1, 9);
 fitMedia(RD_TRAP_MAIN808_BEAT_1, 2, 1, 9);
}

//Finish
finish();

Run it... and nothing happens. Our condition was false. Let’s change the first
statement to var x = true;. Now our code block runs! It prints something to
the console, and adds some clips to the DAW.

CHAPTER 6: Making Decisions

60

Else
In the previous example, our program does nothing if the condition is false. This
is fine in many cases, but sometimes we will want to add a different clip if our
condition is not met. For this, we use an if...else statement:

// javascript code
//
// script_name: Conditionals
//
// author: The EarSketch Team
//
// description: Change the value of x to see how it affects the conditional statement
//
//
//

//Setup
init();
setTempo(120);

//Conditionals

var x = false;

if (x) {

 println("The condition is true!");

 fitMedia(YG_NEW_HIP_HOP_ARP_1, 1, 1, 9);
 fitMedia(RD_TRAP_MAIN808_BEAT_1, 2, 1, 9);

} else { //The following block of code (lines 28-32) only runs if x is false.

 println("The condition is false!");

 fitMedia(YG_NEW_FUNK_ELECTRIC_PIANO_4, 1, 1, 9);
 fitMedia(YG_NEW_FUNK_DRUMS_4, 2, 1, 9);
}

//Finish
finish();

Making Decisions

61

As before, try changing the value of x so our else statement runs. You will
see that it only runs when x is false.

You might be thinking “Can’t we just do this by putting a fitMedia() call
after the conditional statement?” In this case, the clip would be added when
our condition is not met (which is our intended effect). However, it would also
be added if the condition is met (which is not our intended effect: we don’t
want both clips), so this is not the same as using else.

In short, else lets you use a condition to decide between two actions. No-
tice that an if statement (no else) only lets you decide between either doing
or not doing a single action.

Conditional Statements In Loops
We won’t usually manually change a Boolean value to get a conditional state-
ment to run. As we will soon see, a Boolean can change as a result of our pro-
gram running. For example, the loop counter in a for-loop changes with each
iteration. We can use a Boolean to indicate whether or not our loop counter is
greater than some number, and if it is, then execute a conditional statement.

Here is an example of using conditional statements inside of a loop:

// javascript code
//
// script_name: Looped Conditionals
//
// author: The EarSketch Team
//
// description: Using conditionals in loops to execute parts of the code only after looping several times.
//
//
//

//Setup
init();
setTempo(100);

//Music
var drums = DUBSTEP_DRUMLOOP_MAIN_006;
var perc = DUBSTEP_PERCDRUM_002;
var bass = DUBSTEP_BASS_WOBBLE_011;

for (var measure = 1; measure < 9; measure++) { //This loop runs 8 times.

CHAPTER 6: Making Decisions

62

 fitMedia(drums, 3, measure, measure+1); //This is executed on every iteration. It adds media from measure 1 up to 9.

 if (measure > 2) {
 fitMedia(perc, 2, measure, measure + 1); //This is only executed after 2 iterations. It adds media from measure 3 up to 9.
 }

 if (measure > 4) {
 fitMedia(bass, 1, measure, measure + 1); //This is only executed after 4 iterations. It adds media from measure 5 up to 9.
 }
}

//Finish
finish();

We have 3 statements inside of our for-loop. The drums are added to every
measure in the loop. The perc is only added when measure is greater than 2
(measures 3-8). The bass comes in for measures 5-8.

This incremental build-up of instruments, called an additive structure, is
typical of an introduction to a composition. A good example of this is from Ka-
nye West’s song POWER: in the introduction, listen as the different tracks are
added and the sound becomes more complex and intense. Kanye West’s
“POWER”

Notice that the syntax for conditionals is very similar to for-loops. Each pair
of open and closed curly braces { } makes a block of code: a group of state-
ments that are meant to be run together (as in a loop or conditional).

Code blocks can also contain other code blocks! So when we place loops or
conditionals inside of each other, we nest them. A single block has one pair of
braces { ... one block... } , while nested blocks have pairs of braces in-
side of other braces: { ...outer block... { ...inner block... } }.

Notice that we also increase the indentation for each level of nesting (i.e. for
every new loop or conditional block inside of another one). Indentation doesn’t
have any effect on how your code runs in JavaScript, but is extremely impor-
tant for user-readability. Be sure to use it.

Fills and Modulo
A drum fill is a short break in a drum beat where the drummer plays something
different. Drummers often play fills at the end of a musical phrase, when the
singer or other instruments have paused. It “fills" the empty space, and adds
contrast to an otherwise repetitive rhythm.

Making Decisions

63

https://youtu.be/L53gjP-TtGE
https://youtu.be/L53gjP-TtGE

We can add fills using the modulo operator: %. Note that this symbol does
NOT mean percent in computer science. A modular division operation returns
the remainder of the division of two integer numbers, rather than the quotient
(which would be returned by the “/” sign). For example, 8 % 3 would return 2,
whereas 8 % 4 would return 0. The modulo operator is useful for counting in
cycles, just like a clock counts. Here, we use it to skip count:

// javascript code
//
// script_name: Modulo
//
// author: The EarSketch Team
//
// description: Skip-counting with the modulo operator
//
//
//

//Setup
init();
setTempo(208);

//Music

// This uses an "if statement" to place a synth clip on every even measure of track 1 from measures 1 through 8

for (var measure = 1; measure < 9; measure++) {
 if (measure % 2 == 0) { // When measure is divisible by 2 (a.k.a. even), then measure % 2 equals 0, and the condition is true.
 fitMedia(EIGHT_BIT_ATARI_SYNTH_003, 1, measure, measure+1);
 }
}

//Finish
finish();

Here is a drum fill example:

// javascript code
//
// script_name: Drum Fills
//
// author: The EarSketch Team
//
// description: Using modulo to add drum fills

CHAPTER 6: Making Decisions

64

//
//
//

//Setup
init();
setTempo(100);

//Music
var mainBeat = "0+--0+-0+0++0+++";
var fill = "0+--0+-00+0-0000";

drums = ELECTRO_DRUM_MAIN_BEAT_005;

for (var measure = 1; measure < 17; measure++) {
 if (measure % 4 == 0) { //Check if measure is divisible by 4. If it is (and it will be every 4 measures), then add the drum fill below...
 makeBeat(drums, 1, measure, fill);
 } else { //... otherwise, add this beat!
 makeBeat(drums, 1, measure, mainBeat);
 }
}

//Finish
finish();

We added a fill to every fourth bar. An else statement runs if the conditional
preceding it did not run; think of this statement as saying “otherwise, do this”.

Operators, Expressions, and Statements
We’ve used arithmetic operators like + - / * and % to do math in our programs.
Whenever you use an operator, you create an expression. The computer evalu-
ates expressions to produce a single numerical value. For instance, the expres-
sion (7+8)/3 is evaluated as 5.

There are several other operators in JavaScript. Here are the comparison
operators that we’ve been using to specify conditions. Instead of evaluating to
numerical values, they evaluate to the values true or false.

• ==: is equal to
• !=: is not equal to
• <: is less than
• >: is greater than
• <=: is less than or equal to

Making Decisions

65

• >=: is greater than or equal to

For more advanced material on Booleans, see Teaching Computers to Lis-
ten.

We’ve used the word statement a lot, but what exactly does it mean? It is
when you tell the computer to take an action, like assign something to mem-
ory. Statements contain and combine expressions (and sometimes other
statements): volume = (28%9) / (11-(5*2)). They are the complete sen-
tences of a computer program.

Conclusions
We now know about two ways to change the control flow of a program: loops
and conditionals. There are many ways of using these, either alone or in combi-
nation. If you find yourself writing many lines of similar code, try rewriting it as
a loop. If you want something to change while you are looping, write a condi-
tional statement. These tools are useful for creating musical repetition and var-
iation within that repetition and much more conducive to creative experimen-
tation than simply copying and pasting. When making changes, instead of hav-
ing to change every copied code block, the code in the loops and conditionals
can be changed in one place to accomplish the same result. You’ll save a lot of
time and effort using these new tools!

CHAPTER 6: Making Decisions

66

Musical Form

Using conditionals and loops helped us add small changes (like fills) to our mu-
sic. Here we will learn about larger-scale changes in music, and how we can
code them in a smart way. This will help you to create longer compositions with
EarSketch.

Sections and Form
In music, a section generally refers to several measures of music (often 2, 4, 8,
or 16 measures) that sound like a single musical unit. Compositions can be bro-
ken down into unique sections, each one expressing a different idea or feel-
ing. You can think of sections of a composition as paragraphs in an essay.

By assigning capital letters to these unique sections (A, B, C, etc.) we can de-
scribe the structure of a composition as a series of sections. This high level
structure is called form.

A-B-A Form
Let’s begin with a simple form: A-B-A. This is a common form, and it tends to
work well musically because the B section adds variety, while the second A sec-
tion returns to something familiar. The code below creates an ABA form:

• Section A: measures 1-4.
• Section B: measures 5-7. Features contrasting sounds to Section A.
• Section A (repeated): measures 7-10.

// javascript code
//
// script_name: A-B-A Form
//
// author: The EarSketch Team
//

69

7

// description: A song with A and B sections
//
//
//

//Setup
init();
setTempo(120);

//Music

// Create an A section

fitMedia(Y01_GUITAR_1, 1, 1, 5); // guitar
fitMedia(Y01_DRUMS_1, 2, 1, 5); // drums
for (var measure = 1; measure < 5; measure++) {
 makeBeat(Y01_BASS_1, 3, measure, "0---00--000-0000"); // bass part from rhythm-string
}
for (var measure = 1; measure < 6; measure += 2) {
 fitMedia(Y01_WAH_GUITAR_1, 4, measure, measure+1); // second guitar
}
setEffect(4, DISTORTION, DISTO_GAIN, 10); // distortion on track 4

// fit a 2 measure B section between measures 5 and 7

fitMedia(Y01_OPEN_HI_HATS_1, 1, 5, 7); // drums breakout
fitMedia(Y01_WAH_GUITAR_1, 2, 5, 7); // lead
fitMedia(Y01_CRASH_1, 3, 5, 6); // cymbal crash

// Then back to section A at measure 7

fitMedia(Y01_GUITAR_1, 1, 7, 11); // guitar
fitMedia(Y01_DRUMS_1, 2, 7, 11); // drums
for (var measure = 7; measure < 11; measure++) {
 makeBeat(Y01_BASS_1, 3, measure, "0---00--000-0000"); // bass part from rhythm-string
}
for (var measure = 7; measure < 11; measure += 2) {
 fitMedia(Y01_WAH_GUITAR_1, 4, measure, measure+1); // second Guitar
}
setEffect(4, DISTORTION, DISTO_GAIN, 10); // distortion on track 4

//Finish
finish();

This code creates an EarSketch project with an A and B section, and an ABA
form. The B section is contrasting because it gets sparser and less energetic, by
using fewer instruments and cutting the drums out. There are many other ways

CHAPTER 7: Musical Form

70

to make contrasting sections, including adding effects and using different sam-
ples or rhythms.

Notice that the above code looks somewhat messy and confusing. Imagine if
we extended this to an ABABCAA form! Also note the large section of repeated
code (the last Section A). Repeated code is a sign that the program can be writ-
ten more efficiently. To make this code more modular, we can create our own
functions for section A and section B.

User-Defined Functions
fitMedia(), setTempo(), init(), and range() are all examples of function
calls. A function call consists of the function’s name (i.e. fitMedia) followed by
parentheses which may contain parameters, and tells the function to run. The
above listed functions are provided and defined by EarSketch, whereas some
others come with JavaScript.

You can also create your own functions! User-defined functions allow you
to write some code and execute it anywhere in a script without having to write
it all over again.

Here we define a new function, and call it.

// javascript code
//
// script_name: User-Defined Functions
//
// author: The EarSketch Team
//
// description: Defining our own function that makes a section of music
//
//
//

//Setup

init();
setTempo(100);

//Music

// Here we define a function with one parameter (it takes one argument when called). Parameters are just variables to be used in the function.

function myFunction(endMeasure) {
 fitMedia(ELECTRO_DRUM_MAIN_BEAT_003, 1, 1, endMeasure);
 fitMedia(ELECTRO_ANALOGUE_PHASERBASS_003, 2, 1, endMeasure);
}

Musical Form

71

// Now we call our function, passing it an argument of 17.
myFunction(17);

//Finish

finish();

You can name the function anything you like. We called ours myFunction().
It can also have as many parameters as you like (or none). A parameter is the
variable that holds the argument you pass to a function. You can use this vari-
able inside of the function’s body.

Let’s apply this knowledge to the ABA example. We make functions for sec-
tion A and B, and then call them in the order they should appear in the music:
ABA.

// javascript code
//
// script_name: Better A-B-A
//
// author: The EarSketch Team
//
// description: Making form with user-defined functions
//
//
//

//Setup

init();
setTempo(120);

//Music

// A section

function sectionA(leadGuitar, secondGuitar, drums, bass, startMeasure, endMeasure) {
 // create an A section
 fitMedia(leadGuitar, 1, startMeasure, endMeasure); // lead
 fitMedia(drums, 2, startMeasure, endMeasure); // drums
 // bass beat from startMeasure (inclusive) to endMeasure (exclusive)
 for (var measure = startMeasure; measure < endMeasure; measure++) {
 makeBeat(bass, 3, measure, "0---00--000-0000");
 }
 // second guitar every other measure from startMeasure (inclusive) to endMeasure+1 (exclusive)
 for (var measure = startMeasure; measure < endMeasure; measure+=2) {

CHAPTER 7: Musical Form

72

 fitMedia(secondGuitar, 4, measure, measure+1);
 }
 setEffect(4, DISTORTION, DISTO_GAIN, 10); // distortion on track 4
}

// B section

function sectionB(guitar, drums, cymbalCrash, startMeasure, endMeasure) {
 fitMedia(drums, 1, startMeasure, endMeasure);
 fitMedia(guitar, 2, startMeasure, endMeasure);
 fitMedia(cymbalCrash, 3, startMeasure, startMeasure+1);
}

// Setting up an ABA musical form through function calls

sectionA(Y01_GUITAR_1, Y01_WAH_GUITAR_1, Y01_DRUMS_1, Y01_BASS_1, 1, 5);
sectionB(Y01_WAH_GUITAR_1, Y01_OPEN_HI_HATS_1, Y01_CRASH_1, 5, 7);
sectionA(Y01_GUITAR_1, Y01_WAH_GUITAR_1, Y01_DRUMS_1, Y01_BASS_1, 7, 11);

//Finish

finish();

This is more concise, and now we can easily play with the form: by calling
our section functions as many times as we like, in any order, and using any
measure numbers. This allows us to make much more complex forms than with
simple repetition because the parameters can be defined by the user with each
call.

Return Statements
Some functions have a return statement. It is optional. Return does 2 things:

1. Returns (sends back) a value to the function call.
2. Exits the current function

Note that you do not have to have a return statement to exit a function. If
there is no return statement, the function simply runs to the end of its defini-
tion.

Thus far we’ve mainly used functions to take an action on the DAW, like
adding clips and effects.

Let’s make a function that checks if its argument is even (divisible by 2), and
returns a Boolean value as an answer.

Musical Form

73

// javascript code
//
// script_name: Simple Return
//
// author: The EarSketch Team
//
// description: Defining a function that returns a value to its caller
//
//
//

//Setup
init();

//Function Return Values

// A function that returns true if its argument is even, false if odd.

function isEven(myNumber) {
 var evenBool = (myNumber % 2 == 0);
 return evenBool; // This is our return statement. It makes the function "pass a value back" when it is called. Here, we return the Boolean value (true or false).
}

var returnedValue = isEven(77); // We assign the function's return value to the variable "returnedValue". This is one way to use return values.

println(returnedValue); // Check the console to see if your number was even.

//Finish
finish();

As the form of your music becomes more complex, you will find that it can
be tedious and error prone to keep track of the starting and ending measure
numbers for each section: if we want to change the length of one section, we
have to change all of the others! A better way to do this is to have each section
function return its ending measure number. Then, we can pass that to the next
section function as its starting measure number. So if we want to adjust the
length of a section, we can simply edit that section’s function without worrying
about the other sections.

// javascript code
//
// script_name: A-B-A Return
//
// author: The EarSketch Team

CHAPTER 7: Musical Form

74

//
// description: Linking sections by returning an end measure
//
//
//

//Setup

init();
setTempo(120);

//Music

// A section

function sectionA(leadGuitar, secondGuitar, drums, bass, startMeasure) {
 // create an A section
 endMeasure = startMeasure + 4;
 fitMedia(leadGuitar, 1, startMeasure, endMeasure); // lead
 fitMedia(drums, 2, startMeasure, endMeasure); // drums
 // bass beat from startMeasure (inclusive) to endMeasure (exclusive)
 for (var measure = startMeasure; measure < endMeasure; measure++) {
 makeBeat(bass, 3, measure, "0---00--000-0000");
 }
 // second guitar every other measure from startMeasure (inclusive) to endMeasure+1 (exclusive)
 for (var measure = startMeasure; measure < endMeasure; measure+=2) {
 fitMedia(secondGuitar, 4, measure, measure+1);
 }
 setEffect(4, DISTORTION, DISTO_GAIN, 10); // distortion on track 4
 return endMeasure;
}

// B section

function sectionB(guitar, drums, cymbalCrash, startMeasure) {
 endMeasure = startMeasure + 2;
 fitMedia(drums, 1, startMeasure, endMeasure);
 fitMedia(guitar, 2, startMeasure, endMeasure);
 fitMedia(cymbalCrash, 3, startMeasure, startMeasure+1);
 return endMeasure;
}

// set up an ABA musical form through function calls

var measure = sectionA(Y01_GUITAR_1, Y01_WAH_GUITAR_1, Y01_DRUMS_1, Y01_BASS_1, 1);
measure = sectionB(Y01_WAH_GUITAR_1, Y01_OPEN_HI_HATS_1, Y01_CRASH_1, measure);
measure = sectionA(Y01_GUITAR_1, Y01_WAH_GUITAR_1, Y01_DRUMS_1, Y01_BASS_1, measure);

//Finish

Musical Form

75

finish();

Abstraction
Just as we group musical ideas into sections, in programming we can cre-
ate abstractions. An abstraction, in general, is a bundling of ideas to form a sin-
gle concept. For example: a car, in one sense, is a collection of components:
motor, radiator, steering wheel, etc. But considering the way we use all of these
components together, it is useful to have a name for the whole collection: car.
Car is our abstraction here. By themselves, none of the components can per-
form the function of driving, but the entire car can.

Functions are one kind of abstraction in computer science. They pack multi-
ple statements into one tool, so the user doesn’t have to worry about the com-
plex inner workings, and so the user can easily refer to this group of statements.

It can be useful to think of programs as having their own kind of form. Ab-
stractions can make this form more understandable to the programmer, which
is helpful when writing and debugging large programs.

Conclusions

Form adds structure to the music and brings in more variety while remaining
repetitive on a larger scale. This can give an ebb and flow to the music, making
it more interesting for the listener. User defined functions and abstraction are
great ways to implement form in code which make the program more efficient
and easier to understand.

CHAPTER 7: Musical Form

76

Making a Drum Set

Arrays
One very useful data structure that we’ll frequently use is called an array,

also called lists in some programming languages. Arrays are a way to store
many items simultaneously in a single variable. These items, or elements, can
be almost anything: numbers, strings, and so on. The two basic things you do
with an array are store items and retrieve items.

If we wanted to make an array of all the clips we are using in our program,
we could write something like this: var myEnsemble = [Y02_DRUM_SAM-
PLES_1, Y01_BASS_1, Y02_GUITAR_1];

myEnsemble is our variable that holds the array, and the elements in our ar-
ray are inside of the square brackets.

So how do we retrieve an element from an array? Everything you put in an
array gets an index number associated with it. The first (left-most) element in
your array has an index number 0, the second has 1, the third has 2, and so on.
Notice that the count starts from 0, not 1! You can access any array element with
with its index number. The syntax for retrieving an array element looks like this:
myEnsemble[0]. This retrieves the element at index 0 from the element (which
is Y02_DRUM_SAMPLES_1).

Here is a more typical example, where we use the retrieved array elements in
several fitMedia calls.

// javascript code
//
// script_name: Arrays
//
// author: The EarSketch Team
//
// description: Using an array to hold several audio clips
//
//

77

8

FIGURE 8-1

//

//Setup
init();
setTempo(100);

//Music

var myEnsemble = [Y02_DRUM_SAMPLES_1, Y01_BASS_1, Y02_GUITAR_1]; // This is our array of clips; each array item is separated by a comma.

fitMedia(myEnsemble[0], 1, 1, 5); // We can access items (like clips) in an array with this notation: myArray[n], where n is the index of an item in the array.
fitMedia(myEnsemble[1], 2, 1, 5);
fitMedia(myEnsemble[2], 3, 1, 5);

//Finish
finish();

Instead of referring to each sample individually, we can make different
groups of them and refer to them by their array name and index number. You
can think of the array as a bookshelf that contains several related audio
clips. Imagine that this bookshelf is complete with numbered placeholders in
which to put books. The numbered placeholders represent index values in the
array. An empty array might look something like this:

CHAPTER 8: Making a Drum Set

78

Iterating through Arrays
A common task with arrays is reading through them, going from the first to

last index. For example, if you think of an array as an album (an array of songs),
then you might want to play each song in order (beginning to end). We use
loops to read through arrays in this way. This loop prints each string in an array,
in order.

// javascript code
//
// script_name: Iterating Through an Array
//
// author: The EarSketch Team
//
// description: Using a loop to retrieve every item in an array, and print each one.
//
//
//

//Setup
init();

//Array Iteration

var myArray = ["Get", "thee", "to", "the", "console!"];

for (var i = 0; i < 5; i++) { // Since there are 5 items in our list, we know it uses indices 0-4. So we stop our loop before 5.
 println(myArray[i]); // We use i as the index number
}

//Finish
finish();

Above, we counted the number of array elements to determine how many
times to loop. While easy enough in this example, you will generally want the
computer to find the length of the array for you. It won’t make any mistakes,
and it can count very long lists quickly. You can find the length of an array using
this syntax: myArray.length. Every array has several properties that describe
it. Length is just one of these properties, and you can access it by writ-
ing .length after your array name.

// javascript code
//

Making a Drum Set

79

// script_name: Length of a List
//
// author: The EarSketch Team
//
// description: Using array.length to get the number of elements in an array and iterate through it.
//
//
//

//Setup
init();

//Using the Array's Length

var myArray = ["Get", "thee", "to", "the", "console!"];

for(var i = 0; i < myArray.length; i++) { // The stopping condition is determined by the length of the array we want to iterate through (in this case, it equals 5)
 println(myArray[i]);
}

//Finish
finish();

We can use iteration through an array to build an introduction to a song.
One effective way to build an introduction is through an additive structure. An
additive structure is one that begins with one track (or more) and, as the intro
progresses, adds more and more tracks at regular time intervals. A good exam-
ple of this is from Kanye West’s song POWER: in the introduction, listen as the
different tracks are added and the sound becomes more complex and intense.
Kanye West’s “Power”

Below is an example of how an additive introduction can be implemented in
EarSketch using an array and for loop.

// javascript code
//
// script_name: An Introduction
//
// author: The EarSketch Team
//
// description: Making an additive introduction to a song using arrays
//
//
//

//Setup

CHAPTER 8: Making a Drum Set

80

https://youtu.be/L53gjP-TtGE

init();
setTempo(108);

//Music

var drum1 = HIPHOP_DUSTYGROOVE_003;
var drum2 = TECHNO_LOOP_PART_006;
var synth = TECHNO_CLUB5THPAD_001;
var whoosh = HOUSE_SFX_WHOOSH_001;

var introArray = [drum1, drum2, synth, whoosh];

// intro generator

for (var track = 1; track < 5; track++) {
 // make a new array index that is 0-based
 var mediaIndex = track - 1;
 // make a measure variable that skips every other measure
 // this one will have values 1, 3, 5, 7, 9
 var measure = (track * 2) - 1;
 fitMedia(introArray[mediaIndex], track, measure, 9);
}

//Finish
finish();

Using Arrays with makeBeat
Thus far, we’ve used makeBeat() with strings made of ’0’ '+' and '-'. A 0 plays
the sample in makeBeat()’s argument.

makeBeat has another feature: if we want to use multiple samples, make-
Beat can use the numbers 0 to 9 in its string to refer to array indices, where our
array stores a set of samples. You can think of each array element as a drum in
our drum kit; each drum is labelled with a unique index number, and makeBeat
plays it whenever it reads that number in its beat string.

// javascript code
//
// script_name: Making a Drumset
//
// author: The EarSketch Team

Making a Drum Set

81

//
// description: Using arrays with makeBeat
//
//
//

//Setup
init();
setTempo(100);

//Music
var drums = [ELECTRO_DRUM_MAIN_BEAT_001, //This is our "drumset": an array of drum clips
 ELECTRO_DRUM_MAIN_BEAT_002,
 ELECTRO_DRUM_MAIN_BEAT_003,
 ELECTRO_DRUM_MAIN_BEAT_004];

var drumPattern = '0+0+11112+2+3+++'; // Each number is actually an index into an array!

makeBeat(drums, 1, 1, drumPattern);

//Finish
finish();

Array Operations
There are many ways of manipulating arrays in your code. So far, we have

looked at creating them manually, and accessing their elements in different
ways. What if we want to change their contents after they have been created?
We can use array operations to add, remove, and search for elements.

Musically, we have been using arrays to store clips that make up a “drum
set”. What if we want to replace some of these clips later? To add an element to
the end of an array, we use the push() function. So, if we write myAr-
ray.push(newElement), then our newElement gets placed in myArray, di-
rectly after the current last element (if there is one).

How about deleting or inserting an element at a specific position in an ar-
ray? We can use the array splice() function for both of these. If we write
myArray.splice(startIndex, deleteCount, elementToInsert), then
splice will go to the startIndex of myArray. At that point, it will delete howev-
er many elements are specified by deleteCount (after startIndex). Finally, it
inserts our elementToInsert at startIndex.

Suppose you want to create a “drum kit” array by picking clips at random.
We can do this by using the EarSketch function selectRandomFile() ! It takes

CHAPTER 8: Making a Drum Set

82

a folder name (from the sound browser) as an argument, and returns a single
clip name.

Below, we use selectRandomFile() , append() , and splice() to make a drum
kit that has a one of it’s clips replaced every measure. Be sure to run the code a
few times and listen to the differences... you will hear different random clips se-
lected each time!

// javascript code
//
// script_name: Random Clips
//
// author: The EarSketch Team
//
// description: Using array operations to randomly replace clips in an array
//
//
//

//Setup
init();
setTempo(120);

//Music

var folder1 = MAKEBEAT;
//var folder2 = DUBSTEP_140_BPM__DUBDRUM;

var drums = [];

var drumString = "0+1+22230+302121";

for(var i = 0; i < 16; i++) {
 var newClip = selectRandomFile(folder1); // Picks a file at random from the specified folder.
 if (i < 4) {
 drums.push(newClip); // Fill up our array first
 }
 else {
 var measure = i-3;

 makeBeat(drums, 1, measure, drumString);
 drums.splice(i%4, 1, newClip); // After our array is full, we replace one clip at a time. The mod 4 is so that when we reach the end of the array, we start replacing clips at the beginning again.
 }
}

//Finish
finish();

Making a Drum Set

83

If you listen carefully, you can here that the basic rhythm stays the same,
while the clips used in the rhythm are gradually changed at random. Try using a
different folder to select random clips from! In the next lesson, we will learn
more about how to incorporate random elements into your music.

CHAPTER 8: Making a Drum Set

84

Randomness and Strings

When musicians use computers to make music, they often do so because they
want complete and precise control over the music they create. At the same
time, many musicians also use technology to give up control, introducing ele-
ments of randomness into their music. In a sense, they let the computer impro-
vise, within the guidelines the composer gives it.

There is a long history of randomness in music. In 1787, Mozart created a
musical “dice game.” He composed many different one-measure musical frag-
ments, and then rolled two six-sided dice to decide which fragment to choose
for each measure in the piece, a short minuet. Mozart designed the musical
fragments so that no matter how they were rearranged based on the dice rolls,
the music would sound good. Many other composers have used techniques
similar to this, especially as technology made it more feasible.

Random numbers are used often in computing: from shuffling a playlist of
songs, to encrypting personal data. In EarSketch, we can use random num-
bers to introduce some surprise and some novelty into our music, to give a
more improvisational feel to our music. You’ll use random numbers in combi-
nation with string operations: tools for programmatically rearranging
strings.

Random Numbers
You probably have an intuitive sense that randomness means unpredictability.
That is exactly what it means for a series of numbers to be random: you cannot
predict an upcoming random number from any that have been previously gen-
erated.

We can generate a random number in JavaScript using the random() func-
tion. To call this function, we have to retrieve it from something called Math.
Math is a collection of math-related utilities, such as our random number gen-
erator. We call the random() function in Math by writing Math.random().

Math.random() generates floating point numbers between 0 (inclusive) and
1 (exclusive). We will need to scale this by multiplying the result by our desired

85

9

range of numbers. When generating random numbers, we always need to
choose a range for these numbers to be generated in. For example, if we have 6
items in an array, and we want to randomly choose them by their indices, then
we need random numbers from 0 to 5. Since Math.random() generates num-
bers between 0 and 1 (exclusive), Math.random() * 6 will generate random
numbers between 0 and 6 (exclusive). Our random number call would look like
this: Math.random() * 6.

There is one final snag: array indices must be whole numbers! If Math.ran-
dom() returned 0.27, and we multiplied by our range of 6, we would get an in-
dex of 1.62, which doesn’t exist. To solve this, we use Math.floor(), which
rounds it’s argument down to the nearest whole number:
Math.floor(Math.random() * range). You can use this expression as a for-
mula for making random numbers.

Let’s use random numbers to pick random clips from an array.

// javascript code
//
// script_name: Random Clip
//
// author: The EarSketch Team
//
// description: Randomly selecting clips from a list
//
//
//

//Setup
init();
setTempo(100);

//Music
var sampleBank = [YG_TRAP_SYNTH_BELL_1,
 YG_TRAP_STRINGS_1,
 YG_TRAP_SHORT_SYNTH_1,
 YG_TRAP_HIT_1,
 YG_TRAP_SYNTH_LEAD_6,
 YG_TRAP_BELLS_1];

for(var i = 1; i < 9; i++) {
 // Generate a random index number
 var index = Math.floor(Math.random() * 6); // Generates a random index number between 0 and 5. Math.random gives us a float between 0 and 1, then we scale it by multiplying, and then use floor to make our float an integer

 // Use the random index to pick a sample
 fitMedia(sampleBank[index], 1, i, i+1);
}

CHAPTER 9: Randomness and Strings

86

fitMedia(YG_TRAP_KICK_4, 2, 1, 9);
fitMedia(YG_TRAP_BASS_1, 3, 1, 9);
fitMedia(YG_TRAP_SNARE_5, 4, 1, 9);

//Finish
finish();

String Operations: Concatenation
Concatenation. This simply means linking strings together in a series. If we
concatenate the string “hello” with the string “world”, we get a new string: “hel-
loworld”. In this section, we will concatenate beat strings to make longer rhyth-
mic patterns.

We can concatenate strings using a plus (+) sign.

// javascript code
//
// script_name: Concatenation
//
// author: The EarSketch Team
//
// description: Combining two strings into one string
//
//
//

//Setup
init();

//Concatenation

var stringA = "Great";
var stringB = "concatenations";

var newString = stringA + " " + stringB; // In this context, the plus symbol means "concatenate". We also add a space " " in between stringA and stringB

println(newString);

//Finish
finish();

Randomness and Strings

87

We concatenated three strings, including a space " ".

Let’s make some music with this. We can make a drum beat from randomly
ordered strings. Below, we start by defining several short rhythms. Then, in a
loop, we choose a random beat from our list and concatenate it with final-
Beat. On each iteration, we concatenate another string, so finalBeat grows
as the loop continues.

// javascript code
//
// script_name: Random Concatenation
//
// author: The EarSketch Team
//
// description: Randomly combining beat strings
//
//
//

//Setup

init();
setTempo(100);

//Music
var beatList = ["0++01-0+",

 "-00+1---",

 "0+++1-0+",

 "0+01++10",

 "0+++1-11"];

var endBeat = "0+001-2+";

var drums = [OS_KICK03, OS_SNARE01, OS_OPENHAT04];

var finalBeat = ""; //We initialize an empty string, so that we have something to concatenate to on the first loop (you can't concatenate to a string that doesn't exist)

for(var i = 0; i < 6; i++) {
 //println(i);
 var beatIndex = Math.floor(Math.random() * 5);
 //println(beatIndex);
 finalBeat += beatList[beatIndex]; // This is the same as writing finalBeat = finalBeat + beatList[beatIndex]

CHAPTER 9: Randomness and Strings

88

}

finalBeat = beatList[0] + finalBeat + endBeat; //Combining the beat strings we have created. Our final pattern always starts and ends with the same strings, because we want some regularity in the midst of randomness.

makeBeat(drums, 1, 1, finalBeat);
fitMedia(YG_WEST_COAST_HIP_HOP_PIANO_1, 2, 1, 5);

//Finish
finish();

Notice that we only iterate 6 times, then redefine finalBeat so it has
beat[0] concatenated at the beginning and endBeat at the end. This balances
out the randomness with some regularity, and also gives the listener a cue that
the phrase is ending: the hi hat plays.

Choosing the right arguments for your random number generator and indi-
ces for your loop can sometimes be tricky. If something doesn’t seem quite
right, add print statements to check the range of random numbers you are get-
ting. We have added two print statements in the example above; try uncom-
menting each one separately.

String Operations: Substrings
Suppose we want to go in the other direction: instead of assembling a beat
string from pieces, let’s chop one up and rearrange it. This kind of approach is
very popular in electronic music, especially remixing.

We can “chop up” a string using JavaScript’s substring() function. It
makes a new shorter string from part of another string. substring() takes two
arguments: a starting index (inclusive), and an ending index (exclusive). Like
this: a = substring(start, end). The characters between start and end are
copied to the new string a.

// javascript code
//
// script_name: Substrings
//
// author: The EarSketch Team
//
// description: Getting a part of a string using .substring()
//
//

Randomness and Strings

89

//

//Setup
init();

//Substrings

var a = "Pulling a rabbit out of a string";
var b = a.substring(10, 16); // Makes a new string from the 10th-15th characters of a.

println(b);

//Finish
finish();

Remixing a rhythm
Let’s remix a rhythm by using substrings. We can start with a well-known
rhythm called the “Amen break”. This is widely sampled in many styles of elec-
tronic music. Here we construct a beat string of it:

// javascript code
//
// script_name: Amen Break
//
// author: The EarSketch Team
//
// description: Building a classic drum solo with concatenation
//
//
//

//Setup
init();
setTempo(170);

//Music
var drums = [OS_KICK05, OS_SNARE06, Y24_HI_HATS_1, Y58_HI_HATS_1, OS_OPENHAT01];

var a = "0+0-1+-1+1001+-1";
var b = "0+0-1+-1-10---1+";
var c = "-1001+-1+10---1+";

CHAPTER 9: Randomness and Strings

90

var amenBreak = a + a + b + c; // Concatenating all of the fragments to make the final pattern

makeBeat(drums, 1, 1, amenBreak);

//Finish
finish();

We could have just written it out as one long string, but instead we concate-
nate four strings to build it. This makes it easier to see the structure, since each
starting string is a measure long.

Our rhythm is missing some cymbals. The cymbals should play at the same
time as the main rhythm, so we need to make a separate string and makeBeat
call for them:

// javascript code
//
// script_name: Amen Cymbals
//
// author: The EarSketch Team
//
// description: Adding the cymbals to our amen break
//
//
//

//Setup
init();
setTempo(170);

//Music
var drums = [OS_KICK05, OS_SNARE06, Y24_HI_HATS_1, Y58_HI_HATS_1, OS_OPENHAT01];

var a = "0+0-1+-1+1001+-1";
var b = "0+0-1+-1-10---1+";
var c = "-1001+-1+10---1+";
var cym1 = "2+2+2+2+2+2+2+2+";
var cym2 = "2+2+2+2+2+3+2+2+";
var cym3 = "2+2+2+2+2+4+2+2+";

var amenBreak = a + a + b + c;
var amenCymbals = cym1 + cym1 + cym2 + cym3;

makeBeat(drums, 1, 1, amenBreak);
makeBeat(drums, 2, 1, amenCymbals);

Randomness and Strings

91

//Finish
finish();

Now for the remixing part. Let’s try inserting a random drum pattern some-

where into the middle of our amenBreak string. First we make a random beat
string, 8 characters long, by generating random numbers in a loop; this is our
random drum pattern. These random numbers are concatenated with the same
string, 8 times, so the string grows on each iteration. Notice that += works with
concatenation, not just addition!

 var insertSection = "";

 for(var i = 0; i < 8; i++) {
 insertSection += Math.floor(Math.random() * 5);
 }

Now, we want to insert insertSection into the middle of our main amen-

Break string. We want our final string to be the same length as the original
string. We will need to make substrings to do this:

var insertLocation = 16;
var numBeats = 8;

var frontSection = amenBreak.substring(0, insertLocation);
var endSection = amenBreak.substring(insertLocation + numBeats, amenBreak.length-1);

var newBeat = frontSection + insertSection + endSection;

CHAPTER 9: Randomness and Strings

92

FIGURE 9-1

Inserting a section in
the middle of
amenBreak, using
substrings

Putting everything together, we have this:

// javascript code
//
// script_name: Amen Remix
//
// author: The EarSketch Team
//
// description: Replacing part of the amen break string with a random beat string
//
//
//

//Setup
init();
setTempo(170);

//Music
var drums = [OS_KICK05, OS_SNARE06, Y24_HI_HATS_1, Y58_HI_HATS_1, OS_OPENHAT01];

var a = "0+0-1+-1+1001+-1";
var b = "0+0-1+-1-10---1+";
var c = "-1001+-1+10---1+";
var cym1 = "2+2+2+2+2+2+2+2+"
var cym2 = "2+2+2+2+2+3+2+2+"
var cym3 = "2+2+2+2+2+4+2+2+"

Randomness and Strings

93

var amenBreak = a + a + b + c;
var amenCymbals = cym1 + cym1 + cym2 + cym3;

var insertSection = "";

for(var i = 0; i < 8; i++) {
 insertSection += Math.floor(Math.random() * 5); // We build our random string, 8 beats long
}

var insertLocation = 16; // Our random string gets inserted to the amenBreak at this index (16 16th notes in... so after 1 measure)
var numBeats = 8;
var frontSection = amenBreak.substring(0, insertLocation);
var endSection = amenBreak.substring(insertLocation + numBeats, amenBreak.length-1);
var newBeat = frontSection + insertSection + endSection;

makeBeat(drums, 1, 1, newBeat);
makeBeat(drums, 2, 1, amenCymbals);

//Finish
finish();

For a more advanced version of this script, see Abstracting the Remix.

CHAPTER 9: Randomness and Strings

94

More Effects

Collaboration has always played a part in music-making. In recorded music,
you typically have many different people working on one project: composer,
songwriter, producer, sound engineer, and so on. There are many tasks involved
in creating a finished product, and one of these is the mixing stage. This means
applying effects to make the final “mix” of tracks sound balanced and interest-
ing. We will use some additional features of setEffect() to do this.

Beyond mixing and mastering, there are many other creative uses for se-
tEffect() . You can completely transform a piece of music by applying high
levels of effects to your tracks. You can even make time-varying effects, so that
the effect amount changes with the rhythm of your composition!

Envelopes
The effects we have added with setEffect() have been applied to entire
tracks, with the effect parameters remaining constant throughout the track.
What if we only wanted to add effects to part of a track or change the effect val-
ues over time? We can use envelopes to do this.

Envelopes define how an effect’s parameter changes over time:

95

10

FIGURE 10-1

Changing volume
over time with
envelopes.

FIGURE 10-2

Envelopes are
defined by points.

We describe an envelope using a series of value-time pairs. Each pair con-
tains a value for an effect parameter, and a point in time to set it to that val-
ue. For example: (-60, 1, -5, 5) means to place a point at measure 1 at value -60,
and also place a point at measure 5 with value -5. The envelope creates lines
between these points, like a game of connect the dots.

The smooth transition between points is called a ramp.
Envelopes can be used with any effect parameters.

Envelopes with setEffect
Some functions can accept different numbers of arguments. setEffect() is
one of these functions. So far we have used it with 4 arguments: trackNum-
ber, effect, parameter, and effectValue.

Take a look at setEffect() in the EarSketch API. You’ll see that it can take
up to 7 arguments!

CHAPTER 10: More Effects

96

1. trackNumber
2. effect
3. parameter=None
4. effectStartValue=None
5. effectStartLocation=1
6. effectEndValue=None
7. effectEndLocation=None

The parameters followed by equal signs are optional parameters. If you
don’t pass an argument for one of them, they are set to the default value (speci-
fied after the equals sign in the API).

For the simplest use, we would just call setEffect() with 2 arguments:
trackNumber and effect. In this case, the remaining arguments would be set to
their respective default values. This applies the default effect settings to the en-
tire track.

To use envelopes, we will need to use all of setEffect()’s parameters. Re-
member the {value, measure number} pairs above? You can think of each se-
tEffect() call as taking 2 of these pairs: {effectStartValue, effectStartLoca-
tion}; {effectEndValue, effectEndLocation}. Take a look at this example:

// javascript code
//
// script_name: Envelopes
//
// author: The EarSketch Team
//
// description: Making envelopes with 7 parameter setEffect
//
//
//

//Setup
init();
setTempo(120);

//Music
fitMedia(ELECTRO_ANALOGUE_LEAD_012, 1, 1, 9);
setEffect(1, VOLUME, GAIN, -60, 1, 0, 3); // Makes an effect ramp between measures 1 and 3, moving from -60dB to 0dB

//Finish
finish();

More Effects

97

This is a called a fade. It makes the sound “fade in" by gradually increasing
the volume between measures 1 and 3. Fades are a great way to start or end a
composition. You can even use them to transition, by fading one track out (de-
creasing volume) while fading another in.

You can make more complex envelopes by making several consecutive se-
tEffect() calls. Below, we define the time points as variables to make things
easier to see. Many of the end points for one setEffect() call are the same as
the starting point for the next. Note that you can also stack multiple effects on a
single track. Or if you want to tweak a single effect even more, you can set mul-
tiple parameters for that single effect! Use a separate setEffect call to change
each parameter on a single effect.

// javascript code
//
// script_name: Complex Envelopes
//
// author: The EarSketch Team
//
// description: Using multiple setEffect calls on a track to make changes in the effect envelope.
//
//
//

//Setup
init();
setTempo(120);

//Music
fitMedia(ELECTRO_ANALOGUE_LEAD_012, 1, 1, 9);

// Envelope time points
var pointA = 1;
var pointB = 4;
var pointC = 6.5;
var pointD = 7;
var pointE = 8.5;
var pointF = 9;

setEffect(1, VOLUME, GAIN, -60, pointA, 0, pointB); // fade in
setEffect(1, VOLUME, GAIN, 0, pointB, 12, pointC); // crescendo
setEffect(1, VOLUME, GAIN, 12, pointD, 0, pointE); // begin fade out
setEffect(1, VOLUME, GAIN, 0, pointE, -60, pointF); // end of fade out

setEffect(1, FILTER, FILTER_FREQ, 20, pointA, 10000, pointF); // another effect stacked on top

//Finish

CHAPTER 10: More Effects

98

finish();

Automating Effects
You can get creative with effects by automating them: using algorithms to de-
fine envelopes. Suppose we wanted to make a volume ramp every measure. We
can do this with a for loop:

// javascript code
//
// script_name: Rhythmic Ramps
//
// author: The EarSketch Team
//
// description: Automating effects with a for loop
//
//
//

//Setup
init();
setTempo(120);

//Music
for(var measure = 1; measure < 17; measure++) {
 setEffect(1, VOLUME, GAIN, -60, measure, 0, measure+1);
}

fitMedia(Y33_CHOIR_1, 1, 1, 17);
fitMedia(RD_ELECTRO_DRUM_PART_10, 2, 1, 17);

//Finish
finish();

Our setEffect() function is called every measure with a new pair of meas-
ure numbers as arguments.

Let’s make our automation a bit more complex. What if we wanted to have
several ramps per measure? We’ll need to do some math.

More Effects

99

// javascript code
//
// script_name: Fast Effects
//
// author: The EarSketch Team
//
// description: Making multiple volume ramps per measure
//
//
//

//Setup
init();
setTempo(120);

//Music
var measures = 17;
var subdivision = 12;

for(var measure = 1; measure < measures * subdivision; measure++) { // Notice that we don't just use measures as our stopping point; we need to loop enough times for each subdivision in every measure to be created.
 var startLocation = measure/subdivision;
 var endLocation = measure/subdivision + 1/subdivision;

 setEffect(1, VOLUME, GAIN, 0, startLocation, -60, endLocation);
}

fitMedia(Y33_CHOIR_1, 1, 1, 17);
fitMedia(RD_ELECTRO_DRUM_PART_10, 2, 1, 17);

//Finish
finish();

We define subdivisions (the number of ramps we want per measure), and
measures (the total number of measures) at the top.

Let’s walk through this in detail:
We want 12 ramps for every measure, and there are 17 measures, so we

need to call setEffect() a whopping 12 * 17 = 204 times. Rather than write
these numbers in, we can see that the total number of ramps is subdivisions *
measures, so we use that as our stopping condition for the loop.

The setEffect() call is a bit tricky. Our starting location is defined as i/
subdivisions. To get the right number of loops, we had to multiply measures by
subdivisions. Now we need to scale things back down to actual measure num-
bers, so we divide i by subdivisions.

CHAPTER 10: More Effects

100

To get the ending point of the setEffect() call, we take our starting point
and add the desired length of our setEffect() call: 1/subdivision. Why is this
the length? Picture having 4 subdivisions per measure: each subdivision is 1/4
of a measure long. Adding the length to the starting point gives you the ending
point.

Try changing the number of subdivisions, or flipping the slope of the enve-
lope so it starts low and increases.

More Effects

101

Teaching Computers to Listen

Up until now, you have been combining audio clips to create music and adding
effects to these clips to make it more interesting. What if you could get the com-
puter to analyze parts of your composition, and even add effects based on how
different parts sound? This kind of analysis is called Music Information Re-
trieval (MIR), and is widely used in the music technology industry. These tech-
niques allow you to do things such as automatically categorize music (as part of
a music recommendation system), identify a song by humming it into your
phone, and so on.

 Here, we will learn to do some simple MIR using EarSketch’s analyze()
function. We will use the analysis to control various parts of our composition.

Music Information Retrieval
Audio, like all data, is stored in a computer as a series of 0s and 1s. This binary
representation is at a very low level of abstraction. On the other end of the spec-
trum: when we hear this audio being played, we recognize high level features
like harmony, rhythm, instrumentation, and so on. These features are very ab-
stract: they give us a simple name for a mental process that is actually extreme-
ly complex. In a sense, abstractions are useful because they hide (or encapsu-
late) the details, and allow us to focus on the big picture.

Computer code can analyze that audio data to determine certain unique
characteristics of the sound (how loud, how high or low, etc.). Any sound can be
analyzed based on these various features to allow the computer to understand
something about the sound. This process is called music information retriev-
al, or MIR. MIR can be used to teach computers to “listen” to and distinguish
sounds. Humans do this naturally and subconsciously, such as when we distin-
guish between two people’s voices.

A challenge in computing is to try to find high level features in low level data.
In other words, to teach the computer to find relevant information in a stream
of bits. There are many tasks that involve this: for example, making sense of

103

11

FIGURE 11-1

RMS Amplitude

how a human’s DNA (low-level) might be expressed to cause a genetic disease
(high-level). Or perhaps, how local temperature and barometric measurements
(low-level) in many different places can be combined to form a prediction of the
weather (high-level).

EarSketch has a function that performs this kind of analysis for several
higher-level audio features: analyze()

Analysis Features
Every sound can be analyzed in terms of features, which are high-level descrip-
tions of our binary data. Here we will focus on two of the most essential: RMS
Amplitude and Spectral Centroid.

RMS Amplitude is defined as the root mean square (a kind of average) of the
amplitude of a sound and is related to the volume of the sound – a sound with a
high RMS amplitude will be loud, and a sound with a low RMS amplitude will be
soft. This relationship is easy to visualize with graphs because the amplitude of
a sound is defined visually as the vertical distance between the crest (top) and
trough (bottom) of a sound wave. In the figure below, the blue wave has a lower
RMS amplitude than pink wave.

Let’s start by using analyze() with RMS Amplitude. analyze() looks at a
clip and analyzes it using a method of our choice. It returns a value that corre-
sponds to how high or low the level of our feature is in the audio we analyzed.

If we want to analyze a clip with RMS Amplitude, we write: ana-
lyze(clip, RMS_AMPLITUDE) . In the example below, we do this and then
print the value that analyze returns:

CHAPTER 11: Teaching Computers to Listen

104

// javascript code
//
// script_name: Analyze
//
// author: The EarSketch Team
//
// description: Using analyze to get the RMS_Amplitude of a clip, then printing the value
//
//
//

//Setup
init();
setTempo(120);

//Analysis

var clip = YG_TECHNO_ELECTRIC_PIANO_2;

var analysisValue = analyze(clip, RMS_AMPLITUDE);

println(analysisValue);

//Finish
finish();

Now, consider the following code, which analyzes the RMS amplitude of an

audio clip and adds it to a track if this amplitude is greater than a certain
threshold:

// javascript code
//
// script_name: RMS Threshold
//
// author: The EarSketch Team
//
// description: This script adds media to the DAW only if it has an RMS amplitude value above a certain amount. By default, nothing is added: you have to change the rmsThreshold.
//
//
//

Teaching Computers to Listen

105

//Setup
init();
setTempo(120);

//Music

var clipToAnalyze = HIPHOP_TRAPHOP_BEAT_001; //Choose the audio clip to use
var analysisMethod = RMS_AMPLITUDE; //Define the feature to analyze
var rmsThreshold = 0.5; //Define the minimum RMS amplitude necessary for the clip to be added to track 1

//Define the starting and ending measures
var start = 1;
var end = 3;

//Analyze the RMS amplitude of the entire audio clip, and print the value to the console
var rmsAmplitude = analyze(clipToAnalyze, analysisMethod);
println(rmsAmplitude);

//Set up conditional statement to add clip to track 1 only if its RMS amplitude is greater than the threshold value
if(rmsAmplitude >= rmsThreshold) {
 //Insert clip on track 1
 fitMedia(clipToAnalyze, 1, start, end);
}

//Finish
finish();

Line 13 uses the analyze() function, which takes as its parameters an au-
dio clip and an analysis feature, to obtain the RMS amplitude (average loud-
ness, roughly) of an audio clip:

var rmsAmplitude = analyze(clipToAnalyze, analysisMethod);

The if statement at lines 17-20 tests to see if the RMS amplitude of the au-
dio clip is larger than the threshold value (line 9); if it is, the audio clip is added
to track 1 from measures 1-3. Try changing the value of rmsThreshold so that
the clip is added to the track.

To make MIR more useful, the computer must be able to execute conditional

statements to make decisions based on the values of various features. Try run-
ning the following code, which creates a noise gate that mutes a track whenev-
er another’s volume falls below a certain threshold:

CHAPTER 11: Teaching Computers to Listen

106

// javascript code
//
// script_name: Auto-Volume
//
// author: The EarSketch Team
//
// description: We compare the RMS amplitude of two samples at different points in time, and adjust their respective volumes based on this.
//
//
//

//Setup
init();
setTempo(120);

//Music
var sound1 = ELECTRO_DRUM_MAIN_BEAT_001;
var sound2 = ELECTRO_DRUM_MAIN_BEAT_002;
var analysisMethod = RMS_AMPLITUDE;
var hop = 0.0625; // analyze in 1/16th note chunks
var start = 1;
var end = 3;
var numChunks = 32;

fitMedia(sound1, 1, start, end);
fitMedia(sound2, 2, start, end);

for(var i = 0; i < numChunks; i++) {

 var position = 1 + i * hop;
 var feature1 = analyzeTrackForTime(1, analysisMethod, position, position + hop);
 var feature2 = analyzeTrackForTime(2, analysisMethod, position, position + hop);

 if (feature1 > feature2) {
 setEffect(1, VOLUME, GAIN, 0, position, 0, position + hop);
 setEffect(2, VOLUME, GAIN, -60, position, -60, position + hop);
 } else {
 setEffect(1, VOLUME, GAIN, -60, position, -60, position + hop);
 setEffect(2, VOLUME, GAIN, 0, position, 0, position + hop);
 }
}

//Finish
finish();

Teaching Computers to Listen

107

A for loop at line 15 steps through each 1/16th note section of an audio clip.
Notice that the hop variable is defined as 1/16 = 0.0625, and line 17 updates the
location variable by adding 1/16 to the current measure value. Then, line 21
uses a conditional to check if the volume of track 1 at each location is greater
than the volume of track 2 at each location. The track with the greater volume
has its volume at the current location set to 0dB using setEffect, and the track
with the lesser volume is set to -60dB.

if (feature1 > feature2) {
 setEffect(1, VOLUME, GAIN, 0, position, 0, position + hop);
 setEffect(2, VOLUME, GAIN, -60, position, -60, position + hop);
 } else {
 setEffect(1, VOLUME, GAIN, -60, position, -60, position + hop);
 setEffect(2, VOLUME, GAIN, 0, position, 0, position + hop);
 }

This code uses a method called analyzeTrackForTime() to analyze the
audio clip. The function has four parameters: the track number, the feature to
be analyzed, and the starting and ending locations for the analysis. The func-
tion returns a number between 0 and 1, representing the average value of the
specified feature between the starting and ending point.

Spectral centroid is defined as the average frequency of a sound and relates
to the “brightness” of the sound – a sound with a high spectral centroid (like a
cymbal) will be brighter and usually sound higher in pitch, whereas a sound
with a low spectral centroid will be less bright and usually sound lower in pitch.

A graph of the average frequency of a drum sound might look like this:

CHAPTER 11: Teaching Computers to Listen

108

FIGURE 11-2

Spectral Centroid of
a drum

Boolean Operators
Suppose we want to add a clip to the DAW if both the spectral centroid AND the
RMS amplitude are above a certain threshold. So far, we have only seen condi-
tional statements with one condition. How can we check for two conditions to-
gether?

We could do this by having a chain of if...else statements, or by nesting con-
ditionals, but this can get unwieldy and difficult to read. A much better way is to
use Boolean operators.

Boolean operators (a.k.a. logical operators) allow us to combine conditions.
Remember that conditions evaluate to true or false, aka Boolean values. A
Boolean operator combines two Boolean values and produces one Boolean value.
Let’s take a look at what this means:

// javascript code
//
// script_name: Boolean AND
//

Teaching Computers to Listen

109

// author: The EarSketch Team
//
// description: Using && (AND) to make a condition out of two conditions
//
//
//

//Setup
init();
setTempo(120);

//Music
var threshold = 0.2;
var spectralCentroid = 0.4;
var rms = 0.3;

if((spectralCentroid > threshold) && (rms > threshold)) {
 fitMedia(DUBSTEP_LEAD_006, 1, 1, 4);
}

//Finish
finish();

Above, we use the AND operator. The AND operator, written in JavaScript as
&&, evaluates as true only when both of its operands (the conditions on either
side) are true. Both our rms and spectralCentroid values are greater than
threshold, so our AND statement is true: true && true = true.

There are several Boolean operators. Here are the three fundamental ones:

• AND: Returns true only when both of its operands are true. Written as &&.
◦ true && true == true

◦ true && false == false

◦ false && false == false

• OR: Returns true only when at least one of its operands is true. Written as
||.

◦ true || true == true

◦ true || false == true

◦ false || false == false

• NOT: Returns the opposite Boolean. Written as !.
◦ ! false == true

◦ ! true == false

CHAPTER 11: Teaching Computers to Listen

110

Let’s use a combination of features to determine whether to add a set of
clips to the DAW. Below, we chose a set of clips to add to a track based on their
analysis values. Each set of clips is analyzed for both spectral centroid and RMS
amplitude.

We sum the analysis values of the clips in each set (to obtain an overall value
for the set). The analysis values of both features are compared between two clip
sets: this gives us our condition that decides which of 3 clip sets to add to the
DAW.

// javascript code
//
// script_name: Booleans
//
// author: The EarSketch Team
//
// description: Using Boolean operators to decide which clips get added to a song
//
//
//

//Setup
init();
setTempo(120);

//Music
var sectionAClips = [ELECTRO_STARLEAD_001,
 YG_FUNK_FUNK_GUITAR_1,
 ELECTRO_MOTORBASS_005,
 Y01_DRUMS_1];

var sectionBClips = [EIGHT_BIT_ATARI_LEAD_010,
 RD_UK_HOUSE__WARMPIANO_2,
 DUBSTEP_SUBBASS_014,
 ELECTRO_DRUM_MAIN_BEAT_002];

var sectionCClips = [YG_EDM_LEAD_2,
 Y10_KEYS,
 YG_NEW_HIP_HOP_BASS_9,
 RD_POP_MAINBEAT_16];

function addSection(startMeasure, endMeasure, clips) {
 var length = clips.length;
 for(var i = 0; i < length; i++) {
 var track = i+1;
 fitMedia(clips[i], track, startMeasure, endMeasure);

Teaching Computers to Listen

111

 }
}

var spectralCentroidA = 0;
var spectralCentroidB = 0;
var rmsA = 0;
var rmsB = 0;

for(var i = 0; i < 4; i++){
 spectralCentroidA += analyze(sectionAClips[i], SPECTRAL_CENTROID);
 spectralCentroidB += analyze(sectionBClips[i], SPECTRAL_CENTROID);
 rmsA += analyze(sectionAClips[i], RMS_AMPLITUDE);
 rmsB += analyze(sectionBClips[i], RMS_AMPLITUDE);
}

if (spectralCentroidA > spectralCentroidB || rmsA > rmsB) {
 addSection(1, 5, sectionAClips);
} else if (spectralCentroidA < spectralCentroidB || rmsA < rmsB) {
 addSection(1, 5, sectionBClips);
} else {
 addSection(1, 5, sectionCClips);
}

//Finish
finish();

CHAPTER 11: Teaching Computers to Listen

112

FIGURE 12-1

Image: NASA/JPL-
Caltech/STScI

Sonification

Images as Data
If you could hear this image of the Orion Nebula what would it sound like?

It might seem strange to think about hearing a picture, but think about it
this way: the code that you write to make music in EarSketch is a kind of data,
and so is this image. Sonification is a way to use non-speech audio to convey
information, or in other words, turning data into sound. Sonification has a lot of
practical applications, like giving the visually impaired a way to experience vis-
ual information through sound. We can also use sonification in music to convey

115

12

FIGURE 12-2

some thematic or structural connection to data or images or, as with any com-
puter algorithm, to help us generate new musical materials that we might not
otherwise think of.

Though you can sonify many different kinds of data, images are a fun place
to start.

So how can we get music from an image? A digital image is really just made
up of a lot of small pieces of data – and sonification lets us turn data into
sound. Think about what happens when you zoom in on a picture, looking at it
closer and closer. Eventually, you get to the smallest single component of an
image. If you zoom in far enough, any image is just a lot of little squares of dif-
ferent colors. These are called pixels. Pixels are kind of like the atoms of images
– the smallest part, with a big group of them making up the whole.

The color of each of these pixels is a piece of data. Every pixel has RGB val-
ues – red, green, blue. Your computer reads colors by knowing these values,
which tell it how much red, how much green, and how much blue there is in
that color. Each pixel also has a luminosity value – how light or dark it is. So you
can use these numbers to either tell a computer what color you want it to pro-
duce, or in the case of image sonification, the computer can look at an image
and tell what color each pixel is – producing numbers that you can use in Ear-
Sketch programs.

Multidimensional Arrays
We now know that any image is made up of a large number of pixels, each of
which has number values that represent colors and brightness. Consider this
row of four (zoomed in) pixels:

CHAPTER 12: Sonification

116

FIGURE 12-3

FIGURE 12-4

These pixels are grayscale, so they’re easily represented by one number each

that tells us how light or dark they are. Luminosity is on a scale of 0 to 255, from
black (0) to white (255). The values of these four pixels are: 255, 189, 80, 0.

Remember our array data structure that can store any kind of information?
The values of this row of pixels could be easily stored in an array.

var pixels = [255, 189, 80, 0]
Of course, most of the time an image isn’t a single row. Instead, it’s 2-

dimensional. Any image, zoomed in to its pixels, could look something like this:

Now we have a square image with four rows. You could think of this as four
different arrays:

row1 = [255, 189, 80, 0]
row2 = [255, 80, 189, 189]
row3 = [189, 0, 189, 0]
row4 = [0, 189, 189, 80]

As we learned, arrays can store any data type… this includes arrays! We can
also represent our image as an array of arrays, or a multidimensional array. It’s
a matrix of luminosity values.

matrixExample = [[255, 189, 80, 0],
[255, 80, 189, 189],

Sonification

117

FIGURE 12-5

[189, 0, 189, 0],
[0, 189, 189, 80]]

Notice how each array within the “matrix” array represents a single row of
pixels. If we had the ability to step through that matrix and look at every value
inside it, what could we do with those values? Using sonification, we can turn
those numbers into sound.

Here’s a simpler example. What if our matrix was just black and white? This
is a zoomed-in image of an 8×8 square – each square is a single pixel.

What do you think this image looks like as data? Remember that the lumi-

nosity value of a black pixel is 0 and a white pixel is 255.

importImage
After you’ve made a guess about the data, here’s a way for you to check it. If you
want to work with images in EarSketch, you can use our importImage function
that converts any image into data that can be used within EarSketch. import-
Image takes 3 required arguments (and one optional argument for color data).
These are the 3 basic arguments:

importImage(imageURL , numberOfRows , numberOfColumns)

CHAPTER 12: Sonification

118

The image URL is the source of the image, so you will have to use a picture
on the internet. If you have your own image file you want to sonify, you can use
an online image host to upload it to the internet. To get the URL of an image
online, try right-clicking it and choosing “Copy Image Location”.

The number of rows and columns refers to the size of the matrix that im-
portImage will return. The function actually divides the picture up into a grid
of size numberOfRows x numberOfColumns, and returns the average value of
each grid space.

To convert the black-and-white grid image from above into a multidimen-
sional array of pixels, right-click it to copy the URL, and paste that in as your
first argument. Choose 8 rows and 8 columns. It should look something like
this:

init();

var myImage = importImage("http://earsketch.gatech.edu/wp-content/uploads/2013/03/grid_zoomed.png", 8, 8);

println(myImage);

finish();

Take a look at what gets printed to the console. Was the data for that image
what you expected? It should look something like this:

[[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0]];

You can also specify any array dimensions for the output – you don’t have to
just use the original number of pixels. Our image here is only 8×8 pixels, which
is very small. Imagine how many pixels most images you look at are! When
you’re working with images in EarSketch, you probably won’t want to work
with hundreds or thousands or millions of pixels – so instead, the Image Con-
verter lets you turn any image into a multidimensional array of whatever size

Sonification

119

FIGURE 12-6

you want. If you can’t decide what size to use, choosing “16″ for columns might
work well, since that’s the number of sixteenth notes in an EarSketch measure
and the number of measures in many musical phrases. For now, put in “8″ and
“8″ for the number of rows and columns, to match the data for our 8×8 grid.

Most of the time, you’ll just want your image to be in black and white (grey-
scale), unless you’re doing something in EarSketch specific to RGB color values.
If you choose to use a color image, then you have the option to convert it to a
3D matrix. Since our grid is black and white, we don’t have to worry about that
for now.

Now onto sonification: we have data that EarSketch can understand, and we
can turn that data into sound.

Nested Loops
Now that we know how to turn an image into data using importImage, we can
use EarSketch to turn that data into sound. Let’s go back to our checkerboard.
We can turn it into a drum beat by writing code that will create a beat with hits
on the black squares and rests on the white squares.

Remember from our lesson about arrays that we can access an element in a
single-dimensional array like this: array[index]. For a two-dimensional array,
we give coordinates: array[index1][index2]. So for the example above, my-

CHAPTER 12: Sonification

120

Image[0][0] = 0 and myImage[0][1] = 255. This represents the first two
pixels in the first row.

When we learned about iterating through arrays, we saw how easy it is to
step through a one-dimensional array using a for loop. In order to step through
a multidimensional array, we just need to use two for loops. We nest them to-
gether, so that an outer loop steps through each row, and an inner loop steps
through each column for the current row.

If we wanted to step through the grid above to create a beat string (in a vari-
able called drumBeats) with hits on black and rests on white, our nested loop
could look like this:

for (var outerCounter = 0; outerCounter < myImage.length; outerCounter++) {
 for (var innerCounter = 0; innerCounter < myImage[0].length; innerCounter++) {
 // println("row:");
 // println(outerCounter);
 // println("column: ");
 // println(innerCounter);

 if (myImage[outerCounter][innerCounter]== 255) { // if the color is white
 drumBeats[outerCounter] = drumBeats[outerCounter] + "-"; // then rest
 } else {
 drumBeats[outerCounter] = drumBeats[outerCounter] + "0"; // otherwise, hit
 }
 }
}

Let’s step through this code line by line in order to understand it completely.
First, line 1 defines a loop over the rows of the checkerboard image and defines
the variable outerCounter to hold the value of the current row:

for (var outerCounter = 0; outerCounter < myImage.length; outerCounter++) {

Look closely again at the printed results of myImage (a 2-dimensional array):

[[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],
[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0],

Sonification

121

[0,255,0,255,0,255,0,255],
[255,0,255,0,255,0,255,0]];

The length of the myImage array is simply the number of arrays inside the 2-
dimensional array, which is 8. We’ll call this the number of rows in the myImage
array. So the outerCounter variable will run from 0 to 7, which is exactly what
we want.

Line 2 does nearly the same thing but specifies a different range of values to
loop over:

Notice the myImage[0].length. This simply says the length of the my-
Image[0] array. We can see that myImage[0] is the first element in the outer
array, which is the first array inside the myImage array:

[0,255,0,255,0,255,0,255];

[0,255,0,255,0,255,0,255]

The length of this array is 8. Thus, the innerCounter variable counts from 0
to 7. Thus, we can think of the inner loop as looping over each column in the
current row of the myImage multidimensional array. The result is that my-
Image[outerCounter][innerCounter] will start at myImage[0][0]. At the
end of the inner loop, the value of innerCounter will increase by one, and the
index of the myImage array will change to myImage[0][1]. The inner loop will
keep incrementing until it has reached the end of the first row, and then will
finish and move again to the outer loop, which will increase the outerCounter
value by one. Then the inner loop will start over again at the second row: my-
Image[1][0] and so on. To summarize, the outerCounter starts at 0, then it
goes to the inner loop, where the innerCounter increases from 0 to 7. When
the inner loop is finished with the current row, the computer will go back to the
outer loop, increasing outerCounter to 1, and then inner loop will start again
with the updated value, increasing the innerCounter variable from 0 to 7
again, and so on. To see this process in the console, uncomment the println
statements in the loop.

Line 8 checks the value of the element in the 2-dimensional array, which
(from the contents of our myImage variable) can only be either 0 or 255:

CHAPTER 12: Sonification

122

 if (myImage[outerCounter][innerCounter]== 255) { // if the color is white

Here, the if statement checks if the current array value has a luminosity of
255 (that is, if it’s white). What we want is to hit on the black pixels and rest on
the white pixels. Here, the pixel is white, and so we rest by adding a “-” to a beat
string that we create for the row (which is the drumBeats[outerCounter] list). If
it’s not 255, the else section of code is run:

 } else {
 drumBeats[outerCounter] = drumBeats[outerCounter] + "0"; // otherwise, hit
 }

In that case, we add a “0″ (or a hit) to the drumBeats[outerCounter] array.
The end result will be one beat string for each row for each row of the checker-
board:

var drumBeats = [
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0'];

drumBeats = [
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',
'-0-0-0-0',
'0-0-0-0-',

Sonification

123

'-0-0-0-0']

The code below does the rest of the work by using the drumBeats variable to
create sound.

init();
setTempo(100);

println("here");

function createDrumbeats(myImage) {

 var drumBeats = [];
 for(var size = 0; size < myImage.length; size++) {
 drumBeats.push("");
 }

 for (var outerCounter = 0; outerCounter < myImage.length; outerCounter++) {
 for (var innerCounter = 0; innerCounter < myImage[0].length; innerCounter++) {
 // println("row:");
 // println(outerCounter);
 // println("column: ");
 // println(innerCounter);

 if (myImage[outerCounter][innerCounter]== 255) { // if the color is white
 drumBeats[outerCounter] = drumBeats[outerCounter] + "-"; // then rest
 } else {
 drumBeats[outerCounter] = drumBeats[outerCounter] + "0"; // otherwise, hit
 }
 }
 }
 return drumBeats;
}

// now, use the createDrumbeats function to create a list of drumbeats representing each row of the image

var myImage = importImage("http://earsketch.gatech.edu/wp-content/uploads/2013/03/grid_zoomed.png", 8, 8);

var snare = Y01_SNARE_1;

var drumBeats = createDrumbeats(myImage);

for (var counter = 0; counter < drumBeats.length; counter++){ //use the first row to demonstrate making a beat using the first list in the myImage variable
 makeBeat(snare, 1, counter + 1, drumBeats[counter]); // build a beat with the contents of the current row
}
setEffect(1, VOLUME, GAIN, 12);

CHAPTER 12: Sonification

124

finish();

A for loop at line 38 is used to to go through each beat string in the (one-
dimensional) drumBeats array to place beats on consecutive measures of a
track. Run this code, and then try tweaking it to use other images.

Of course, we can get a lot more complicated than checkerboards. One thing
you can do is to try making beats with different images to see what happens.
Yet another use for sonification is to think about it backwards – what might the
beats that you want to make look like? Run the code below, listen for the beat,
and think about what it might “look” like.

init();
setTempo(98);

var myImage = importImage("http://earsketch.gatech.edu/wp-content/uploads/2013/04/4x16_large.png", 4, 16);

var snare = Y01_SNARE_1;
var hats = Y19_CYMBAL_1;
var kick = Y01_KICK_1;
var drums = Y02_DRUM_SAMPLES_1;

var bass1 = Y32_BASS_1;
var bass2 = Y32_BASS_2;

var brass1 = Y32_BRASS_1;
var brass2 = Y32_BRASS_2;

var organ1=Y32_ORGAN_1;
var organ2=Y32_ORGAN_2;

var drumBeats=["","","",""];

for(var outerCounter = 0; outerCounter < myImage.length; outerCounter++) {

 for(var innerCounter = 0; innerCounter < myImage[0].length; innerCounter++) {

 if(myImage[outerCounter][innerCounter] >= 200) { // if the color is white
 drumBeats[outerCounter] = drumBeats[outerCounter] + "-"; // then rest
 } else {
 drumBeats[outerCounter] = drumBeats[outerCounter] + "0"; // otherwise, hit
 }
 }
}

Sonification

125

var beatIndex = 5;

for(var counter = 0; counter < 8; counter++) {
 makeBeatSlice(hats,1,beatIndex, drumBeats[0], 1.0625); // Open Hat
 makeBeatSlice(hats,2,beatIndex, drumBeats[1], 1+2*0.0625); //closed hat
 makeBeatSlice(snare,3,beatIndex, drumBeats[2],1+ 4*0.0625); //snare
 makeBeatSlice(kick,4,beatIndex, drumBeats[3], 1+3*0.0625); //kick

 beatIndex = beatIndex + 1;
}

for(var counter = 1; counter < 13; counter += 4) {
 fitMedia(brass1,6,counter,counter+2);
 fitMedia(brass2,6,counter+2,counter+4);
 fitMedia(bass1,8,counter,counter+2);
 fitMedia(bass2,8,counter+2,counter+4);
}

for(var counter = 5; counter < 13; counter += 4) {
 fitMedia(organ1,7,counter,counter+2);
 fitMedia(organ2,7,counter+2,counter+4);
}

//Outro
fitMedia(brass1,6,13,15);
fitMedia(bass1,8,13,15);
fitMedia(organ1,7,13,15);

setEffect(6,PAN,LEFT_RIGHT,30);
setEffect(7,PAN,LEFT_RIGHT,-30);
fitMedia(drums,5,5,13);

for(var counter = 5; counter < 13; counter += 2) {
 setEffect(5, VOLUME, GAIN,-60);
 setEffect(5, VOLUME, GAIN, -60, counter+1.75, -4, counter+1.75);
 setEffect(5, VOLUME, GAIN, -4, counter+2, -60, counter+2);
}

finish();

The project you just listened to used this image as the “myImage” value it
was using to make a beat:

CHAPTER 12: Sonification

126

FIGURE 12-7

Exercises:
1. Some of the best images to use for sonification are those with an alternat-

ing pattern that can be used, for example, to create a beat string. It just so hap-
pens that QR codes typically have alternating (black and white) pixels with ex-
actly these patterns. Try creating your own QR codes using a free QR code gen-
erator. After generating your code, right-click to get the image’s URL. Then use
the URL in importImage to obtain a list to use in your sonification code.

Sonification

127

Sorting

Sorting and Analysis
In this section we’ll learn a little bit more about what we can do with analy-

sis features and arrays. If you recall, an array is a data structure that provides a
way of storing and indexing many values in a single variable. These values will
often be in no particular order (other than the order in which we inserted them
into the array). However, we may want to order these values – perhaps from
smallest to largest – to aid us in composition. To see how, try running the fol-
lowing code:

//Initialize EarSketch
init();
setTempo(120);

//Create an array of audio clips that you want to sort according to a particular analysis feature (spectral centroid in this example)
var clipsList = [HIPHOP_MUTED_GUITAR_001, HIPHOP_MUTED_GUITAR_002, HIPHOP_MUTED_GUITAR_003, HIPHOP_MUTED_GUITAR_004, HIPHOP_MUTED_GUITAR_005, HIPHOP_MUTED_GUITAR_006,
HIPHOP_MUTED_GUITAR_007, HIPHOP_MUTED_GUITAR_008, HIPHOP_MUTED_GUITAR_009, HIPHOP_MUTED_GUITAR_010];

//Declare what feature you'll be analyzing
var feature = SPECTRAL_CENTROID;

//SORTING
//Set up a left counter to step through clipsList, looking at each successive audio clip except the last one
for (var leftCounter = 0; leftCounter < clipsList.length - 1; leftCounter++) {
 //Set up a right counter to step through clipsList, looking at each successive audio clip, starting with the second
 for (var rightCounter = leftCounter + 1; rightCounter < clipsList.length; rightCounter++) {
 //Obtain the clips at the positions of leftCounter and rightCounter
 var leftClip = clipsList[leftCounter];
 var rightClip = clipsList[rightCounter];
 //Obtain the clips' feature values using the analyze() function
 var leftCENTROIDValue = analyze(leftClip, feature);
 var rightCENTROIDValue = analyze(rightClip, feature);
 //Use a temporary variable to swap the two clips if the feature of the right clip is less than that of the left clip
 if (rightCENTROIDValue < leftCENTROIDValue) {

129

13

 var temp = clipsList[leftCounter];
 clipsList[leftCounter] = clipsList[rightCounter];
 clipsList[rightCounter] = temp;
 }
 }
}

var start = 1;
var end = 3;
//Insert the ordered audio clips on track 1
for (var index = 0; index < clipsList.length; index++) {
 fitMedia(clipsList[index], 1, start, end);
 start = start + 2;
 end = end + 2;
}

//The end!
finish();

This code sorts an array of similar audio clips according to their spectral
centroids – darker clips are at the beginning of the array, and brighter clips are
at the end. So, if you’re creating a song and need the “brightest” of the hip-hop
guitar clips, you would pick a clip closer to the end of this array. Consider that
you could also sort an array of audio clips based on their RMS amplitudes (as
we will soon see) to help you select either louder or softer clips, depending on
what you want in your composition. In this way, a sorted array can give you a
“palette” of sounds from which to choose for inclusion in your compositions, or
you can gradually change from one type of sound (e.g. dark) to another type
(e.g. bright) by placing the sorted clips one after another on a track. This exam-
ple illustrates how teaching computers to listen through Music Information Re-
trieval can help you compose music. Next, we’ll learn how to write the code to
sort an array.

The method we will be using to sort arrays is called a selection sort; this
name derives from the fact that this sort, on each successive “pass” through the
array, “selects” the smallest element in the array and places it at the beginning
of the array. The sort uses a nested loop with two counters, one beginning at
the beginning of the array, and one beginning at the next position in the array.
The left counter remains fixed while the right counter steps through the array
elements, comparing each to the element at the left counter. Any time the ele-
ment at the right counter is less than the element at the left counter, the two
elements are swapped. So, at the end of the first “pass” through the array, the
first element in the array is also the smallest. The process then repeats with the
left counter starting at the second position in the array and the right counter

CHAPTER 13: Sorting

130

starting at the third position; after this pass, the second element in the array is
the second smallest. The process repeats until the array is sorted. Let’s take a
look at how the selection sort works – here is some code that creates an array
of five audio clips and sorts this array based on their RMS amplitudes, from low
to high:

//Initialize Earsketch
init();
setTempo(120);

//Create a list of audio clips that you want to sort according to a particular analysis feature (RMS amplitude, in this example)
var clipsList = [HIPHOP_MUTED_GUITAR_001, HIPHOP_MUTED_GUITAR_002, HIPHOP_MUTED_GUITAR_003, HIPHOP_MUTED_GUITAR_004, HIPHOP_MUTED_GUITAR_005];

//Declare what feature you'll be analyzing
var feature = RMS_AMPLITUDE;

//SORTING
//Set up a left counter to step through clipsList, looking at each successive audio clip except the last one
for (var leftCounter = 0; leftCounter < clipsList.length - 1; leftCounter++) {
 //Set up a right counter to step through clipsList, looking at each successive audio clip, starting with the second
 for (var rightCounter = leftCounter + 1; rightCounter < clipsList.length; rightCounter++) {
 //Obtain the clips at the positions of leftCounter and rightCounter
 var leftClip = clipsList[leftCounter];
 var rightClip = clipsList[rightCounter];
 //Obtain the clips' RMS amplitudes using the analyze() function
 var leftRMSValue = analyze(leftClip, feature);
 var rightRMSValue = analyze(rightClip, feature);
 //Use a temporary variable to swap the two clips if RMS amplitude of the right clip is less than that of the left clip
 if (rightRMSValue < leftRMSValue) {
 var temp = clipsList[leftCounter];
 clipsList[leftCounter] = clipsList[rightCounter];
 clipsList[rightCounter] = temp;
 }
 }
}

var start = 1;
var end = 3;
//Insert the ordered audio clips on track 1
for (var index = 0; index < clipsList.length; index++) {
 fitMedia(clipsList[index], 1, start, end);
 start = start + 2;
 end = end + 2;
}

//The end!
finish();

Sorting

131

Our first few lines of code create the list of audio clips to be sorted and de-
fine the feature to be analyzed. In lines 13 and 15, we create two coun-
ters: leftCounter starts at the beginning of clipsList and steps through all
but the last element in the array; rightCounter starts at the second element
in the array and steps through the remaining elements.

We then obtain the RMS amplitudes for the clips at the positions of
both leftCounter and rightCounter using the analyze() function:

//Obtain the clips at the positions of leftCounter and rightCounter
 var leftClip = clipsList[leftCounter];
 var rightClip = clipsList[rightCounter];
//Obtain the clips' RMS amplitudes using the analyze() function
 var leftRMSValue = analyze(leftClip, feature);
 var rightRMSValue = analyze(rightClip, feature);

Lines 17 and 18 obtain the left and right clips for analysis from the clips-
List variable (by using the leftCounter and rightCounter variables). Lines
20 and 21 use the analyze() function to derive the RMS amplitude of a clip.
analyze() takes as its parameters an audio clip and an analysis feature. Our
next few lines of code set up a conditional to determine whether or not the ele-
ment at rightCounter is less than the element at leftCounter. If it is, the
two elements are swapped using a temporary variable:

//Use a temporary variable to swap the two clips if RMS amplitude of the right clip is less than that of the left clip
 if (rightRMSValue < leftRMSValue) {
 var temp = clipsList[leftCounter];
 clipsList[leftCounter] = clipsList[rightCounter];
 clipsList[rightCounter] = temp;
 }

Swapping the left and right clips uses a very common programming techni-
que called a “swap” of two variables. At line 26, a new temp variable is defined
to temporarily hold the left clip. Then at line 27, the value inclipsList[left-
Counter] is updated to the right clip (specifically, the value at clips-
List[rightCounter]. Lastly, at line 28, the clipsList[rightCounter] val-

CHAPTER 13: Sorting

132

ue is updated to the original “left” clip. The end result is to swap the two values,
thus sorting the two clips by their RMS amplitude!

During the first iteration of the outer “for” loop (at line 15), after the inner
“for” loop (at line 17) has finished all of its iterations, the first element
in clipsList will be the clip with the smallest RMS amplitude. Then,left-
Counter is incremented in the outer “for” loop, and the process starts over, this
time with leftCounter starting at the second element in the list and right-
Counter starting at the third. The sort algorithm continues in this manner,
placing clips with successively larger RMS amplitudes at successive positions in
the list, until the entire list is sorted in order of ascending RMS amplitude. If this
is confusing, view the animated graphic of selection sort in the selection sort
Wikipedia page.

The last part of our code adds each element in our sorted list (which should
now contain all of our audio clips in order from those with the lowest RMS am-
plitude to those with the highest) to track 1, allowing us to play them in order
and hear the increase in RMS amplitude from clip to clip.

Exercises
See if you can sort these audio clips based on their spectral centroids from

high to low.

Sorting

133

http://en.wikipedia.org/wiki/Selection_sort
http://en.wikipedia.org/wiki/Selection_sort

Recursion

What is a Fractal?
In this module we introduce an important concept in both computer science
and artistic practice: the idea of self-similarity, and its related programming
technique recursion. Self-similarity is when a part of an object is similar to the
entire object.

A common property of self-similar designs, which are sometimes called frac-
tals, is that they contain the same pattern at various levels.

The four pictures below are examples of a popular fractal design known as
the Mandelbrot Set.

Quite profound examples of self-similarity can be discovered throughout the
Mandelbrot Set. Looking at the first picture, notice the part outlined in the
white rectangle…

135

14

FIGURE 14-1

Created by Wolfgang
Beyer – from the
Center for Image in
Science and Art –
Flicker photostream
– used with
permission through
Creative Commons
free-use
license. http://
www.flickr.com/
photos/lcisa/
4749984061/in/
set-72157624105468823/

… is actually the entire second picture below!

CHAPTER 14: Recursion

136

Now look at the pattern within the white rectangle of the above picture,
which when zoomed into, becomes this entire picture below:

Recursion

137

And one more time, the design within the white rectangle above is blown up

to reveal this whole picture below:

CHAPTER 14: Recursion

138

Notice the recognizable main pattern of the Mandelbrot Set in black at the
bottom of the above picture. It looks like a beetle or a snowman. Referring back
to the very first picture, you can see this exact same shape within the white rec-
tangle, as well as scattered throughout each of the pictures. This is self-
similarity on a grand scale!

ADDITIONAL LINKS

Interactive Fractal Zoomer: Here you can move around as well as zoom in and out
of a Mandelbrot set.

Deep Mandelbrot Zoom: A very fast zoom video into the Mandelbrot set.

In the next section we’ll be introduced to recursion, and we’ll begin applying

some simple self-similar designs to the composition of music in EarSketch.

Recursion

139

http://neave.com/fractal/
http://youtu.be/0jGaio87u3A

What is Recursion? (Part 1)
In computer science, one of the main ways that self-similarity is expressed is
through a technique called recursion. Recursion is found whenever a function
calls itself from within the body of its own code. In the example function
countdown() below, we can see at line 8 that it calls itself from within its own
body of code. This means that countdown() is a recursive function, and the call
at line 8 is a recursive call.

function countdown(n){
 if(n == 0) {
 println("GO!");
 return;
 }
 println(n);
 countdown(n-1);
}

countdown(3);

In order to understand how recursion works, it’s helpful first to distinguish in
your mind the difference between:

1. The definition of a function in code (in an EarSketch script, for example)
and...

2. The actual running of that function (whenever the function is called).

A function can have only one valid definition, but may have an unlimited
number of calls to it within a script. countdown()is a good first example of re-
cursion, because it clearly shows the main elements of what is needed for re-
cursion to work properly.

First of all, everything that happens directly within a function call is said to
be within that function’s scope. This includes local variable definitions, but
does not include what may happen inside any other function that is called
within its body.

Using countdown() as an example, an integer parameter n is passed in. This
parameter is now within the scope of this particular call of countdown().

At line 4, this parameter n is tested to see if it is equal to zero. This is called
the stopping condition.

If the stopping condition turns out to be True (here it’s when n is equal to
zero), then that particular call of countdown() returns immediately, passing
control back to whatever scope called it. This is either another function or the

CHAPTER 14: Recursion

140

“top level” of code that is written in the script, outside the scope of any func-
tion (shown by line 10 in the above code example).

If the stopping condition is False, print is called, which prints the value of n
(shown by line 7).

It is important to understand that a correctly functioning stopping condition
is vital for recursion to work properly. If the stopping condition fails to cause the
function to return when it should, there is danger of entering an infinite loop,
which will crash the program and possibly the computer. This is why the stop-
ping condition is tested each time the function is called, and must evaluate to
True at some point (e.g. n must equal zero at some point). This insures that at
some point the most recent recursive function call will return, and start the
chain reaction that will return each recursive call back up to the initially called
function, which returns with the final result.

On line 8 we find a clear example of a recursive call. Here countdown() calls
itself, and passes n – 1 in as its integer parameter. This new call to count-
down() is within its own newly created scope, which is fully separate from the
scope of the particular use of countdown() which called it.

If this sounds confusing, then look at the definition of countdown(), follow
it line by line and imagine what it does, while also referring to the two diagrams
below. When you see what is going on here, you’ll understand this process of
recursion.

Now for a concrete example:
When the code example above is run as an EarSketch script, first the func-

tion definition of countdown() is processed, and then this very function is
called from the “top level” of code, as shown by line 10. Thus countdown(3) is
called directly from the “top level” of code, outside the scope of any other func-
tion.

Since n equals 3 here and not zero, this number 3 is printed to the EarSketch
console on its own line, and then countdown() calls itself, passing in a parame-
ter of 2… (n minus 1). The highest level scope of countdown() (which just
made the recursive call to itself) is actually not finished yet, since control has
passed to the recursive call of countdown(), that is shown by line 8 in the func-
tion’s definition. Thus the highest level of countdown() is actually waiting for
the recursive call it just made to return.

As we stated above, this recursive call to countdown() is passed a parame-
ter of 2 (n minus 1, since n in the highest level scope of countdown() is equal to
3).

Now the whole process repeats:
2 is not equal to zero, so it’s printed on its own line, and then is decremented

by one and passed into a new recursive call of countdown(). Now we have n = 1
as the input to this third level of countdown().

Recursion

141

FIGURE 14-2

1 is not equal to zero, so it’s printed, and is then decremented by one and
passed into to a new recursive call of countdown().

Since n = 0 here at last, the stopping condition test in line 4 returns True, and
that particular call of countdown() immediately returns to the one that called it
(which is the next higher scope of countdown(), one level up).

This higher scope of countdown() then immediately returns to the scope
that called it. This keeps happening until the initial countdown() function call
returns to the scope which called it, which is the “top level” of code in the Ear-
Sketch script, outside of any function (shown by line 10 in the code example
above).

By viewing the output of countdown(3) in the picture below, and also the di-
agram below that which shows the flow of control starting from the original call
to countdown(3) on line 10, you can see what recursion is all about. Once you
understand its basic operation, you will know how recursion works at its core.

One more quick term: The parameter n that is passed into the original call to
countdown() at line 10, can be thought of here as the depth of recursion. This is
because there are n recursive calls between the top level function call and the
very last one which returns because its input parameter of n is equal to zero.

This is what countdown(3) shows in the console when run from an EarSketch
script:

This is an illustration of what is happening in the computer when a recursive

function like countdown(3) is called from code:

CHAPTER 14: Recursion

142

FIGURE 14-3

Note that any two commands on a row (countdown(), return) belong to the
same scope, while each separate row belongs to its own separate scope.

What is Recursion? (Part 2)
Now that we understand the basics of recursion, it’s time to see how we can use
recursion to make music with EarSketch.

In the example function placeSounds() below, we see at line 7 that it calls
itself from within its own body of code.

This means that placeSounds() is a recursive function, and the inner call to
itself on line 7 is a recursive call.

// A simple recursive function which places sound clips on consecutive measures
function placeSounds(soundlist, start){
 // this test is called a STOPPING CONDITION.. this particular one tests if "soundlist" is an empty list
 if(soundlist == []) return; // when the result of the stopping condition test is True, the function returns immediately

 fitMedia(soundlist[0], 1, start, start+1);
 placeSounds(soundlist.slice(1, soundlist.length), start+1);
}

Please note that for conciseness here, whenever we use the term “sound”
we mean an audio clip (e.g. placeSounds() means “place audio clips”).

placeSounds() works like this:
You supply it with a list of audio clips and a start measure location (shown

by the function’s parameters on line 3)
It places the first audio clip in the list on track 1 at the start measure location,
and ends the clip one measure later (shown by line 6)
It then calls a new run of itself (at line 7), supplying as parameters:
– the remaining audio clips in the list (every audio clip in the list except the first
one, which was the one just placed)
– its start measure location increased by one measure

Recursion

143

FIGURE 14-4

This keeps “recursing” until there are no more audio clips in the list, at
which point the stopping condition tests True and the work of the function has
ended.

Let’s examine specifically what happens when we call placeSounds() from
code, with a list of four audio clips and a start measure location of 1 (see dia-
gram below):

As shown by the above diagram, the first thing that happens is that clipA is

placed at measure 1 (on track 1), and ends one measure later (see line 6 of the
code).
Then a recursive call is made to the same function, supplying as parameters a
shortened audio clip list ([clipB, clipC, clipD]), and the just-used start
measure location increased by 1 (which becomes 2).
Now clipB is placed at measure 2 (which is the value of the start parameter
that was provided to this particular call of placeSounds()), and ends one
measure later.
A new recursive call is made, supplying as parameters a further-shortened au-
dio clip list ([clipC, clipD]), and the start measure location increased
again by 1 (which becomes 3 here).
Next, clipC is placed at measure 3 and ends one measure later.
Another recursive call is made, supplying as parameters a further-shortened au-
dio clip list ([clipD]), and the updated start measure location (which be-
comes 4).
The last audio clip of the original list, clipD, is placed at measure 4 (and ends
one measure later).

CHAPTER 14: Recursion

144

Another recursive call is made, supplying as parameters: an empty list, and the
updated start measure location (which becomes 5 — although this is never
used… see the next line below).
Now since an empty list has been provided for the soundlist parameter, the
test at line 4 of the code becomes True, and the function immediately returns.
This causes the function that called it to return as well, which causes the func-
tion that called that one to return, etc… all the way back to the original func-
tion call from code, which finally returns (see the above diagram for a clear de-
piction of this process).

Here’s the full code example of recursion:

init();
setTempo(128);

// a recursive function
function placeSounds(soundlist, start){
 if(soundlist.length == 0) return; // if the soundlist parameter contains an empty array... then return without doing anything

 // otherwise, place the first sound from the list on track 1 at the measure given by start, and end it at the beginning of the next measure
 fitMedia(soundlist[0], 1, start, start+1);
 placeSounds(soundlist.slice(1, soundlist.length), start+1); // now it calls itself with updated parameters.
 // updated parameter 1 : the rest of the soundlist (all remaining sounds, except the first sound which was already used)
 // updated parameter 2 : start+1 (as the new start measure for the recursive call)
}
// assign sounds
var clipA = Y45_SYNTHHARP_1;
var clipB = Y45_SYNTHHARP_3;
var clipC = Y45_SYNTHHARP_2;
var clipD = Y45_WHITEBUILD_1;

// create song

placeSounds([clipA, clipB, clipC, clipD], 1);

finish();

In general, a recursive function works something like this:

• The function is called from code, with its required parameter(s) as input
• One of the input parameters is tested to see if it is equal to some value

(this is called the stopping condition).
• If the result of this test is true, the function returns immediately, without

running the rest of the code below the stopping condition.

Recursion

145

• If the result of this test is false, the function keeps on going and runs the
rest of its code.

• Assuming the stopping condition has failed, the rest of the code in the
function body usually does something like this:

• Perform the main task(s) of the function
• Change the input parameter(s) to new value(s), and supply them as input

to a new recursive call of the same function.

Here’s a more complete musical example to run in EarSketch:

init();
setTempo(124);

// similar recursive function to placeSounds() in last example
// two extra parameters have been added here.. tracknum and clip length
function placeSoundsOnTrack(soundlist, tracknum, start, cliplength) {
 if(soundlist.length == 0) return;
 println(start);

 fitMedia(soundlist[0], tracknum, start, start+cliplength);
 placeSoundsOnTrack(soundlist.slice(1, soundlist.length), tracknum, start+cliplength, cliplength);
}
// set up new variables to access specific folders of audio clips
var DRUMFOLDER = TMAINLOOP;
var BASSFOLDER = EABASS;
var SYNTHFOLDER = ELEAD;
var BLIPFOLDER = EIGHTATARISFX;

// set up arrays to hold the audio clips that will be randomly selected from the folders
var drumclips = [];
var bassclips = [];
var synthclips = [];
var blipclips = [];

// fill up the arrays with random audio clip selections from specified folders:

// these audio clips will be placed every two measures, so 4 audio clips will fill up 8 measures
for(var i = 0; i < 4; i++) {
 drumclips = drumclips.concat(selectRandomFile(DRUMFOLDER));
}
// these audio clips will be placed every two beats (0.5 measures each), so 16 audio clips will fill up 8 measures
for(var i = 0; i < 16; i++) {
 bassclips = bassclips.concat(selectRandomFile(BASSFOLDER));
}
// these audio clips will be placed every three 8th-notes (0.375 measures each), so there needs to be more than 16 of them to fill up 8 measures.
// since 8 measures / 0.375 = 21.333..., we can set this to use 21 audio clips, which will make the clips fill up close to the entire 8 measures.
for(var i = 0; i < 21; i++) {
 synthclips = synthclips.concat(selectRandomFile(SYNTHFOLDER));

CHAPTER 14: Recursion

146

 blipclips = blipclips.concat(selectRandomFile(BLIPFOLDER));
}

placeSoundsOnTrack(drumclips, 1, 1, 2); // place a new audio clip every 2 measures
placeSoundsOnTrack(bassclips, 2, 1, 0.5); // place a new audio clip every 0.5 measures (every two beats)
placeSoundsOnTrack(synthclips, 3, 1, 0.375); // place a new audio clip every 0.375 measures (every three eighth-notes)
placeSoundsOnTrack(blipclips, 4, 1.125, 0.375); // start the audio clips on this track one eighth-note later than the others

// use volume effects to set up a balanced mix of the four tracks
setEffect(1, VOLUME, GAIN, 0);
setEffect(2, VOLUME, GAIN, -6);
setEffect(3, VOLUME, GAIN, -12);
setEffect(4, VOLUME, GAIN, -9);

finish();

// INTERESTING TIP:
// since this script uses randomness, each time you run this it should produce a different sounding piece!

Why not just use for loops? This is a valid question, because if examples like
the above were all we were planning on doing, then for loops would be a more
straightforward way to achieve the same thing. Here’s an alternate version of
placeSoundsOnTrack() that uses iteration instead of recursion:

In the next sections, we’ll explore recursive techniques that are much more
difficult to implement with for loops and which connect back to the idea of self-
similarity and fractals.

Recursion

147

FIGURE 14-5

Russian nesting
dolls

MORE INFO ABOUT RECURSION

One of the basic principles of programming is that the same function
may be called multiple times within a code script (as many times as it’s
needed).When this happens, each of the calls to the same function is run
within its own separate scope. Each of these separate function calls runs
the same procedure (as stated in the function’s definition), in its own
separate scope with its own set of parameter values as input. In the case
of recursion, when a recursive function is called, that same function is
called again within a new separate scope, and is called before the parent
function ends.Thus we can think of any recursive function call (as it’s
running) and its scope as being fully “inside” of the scope of the particu-
lar function-call which had called it, like a set of nested Russian dolls.
Using this analogy, the largest doll is the original call to the function
from code (a call from outside of the function’s definition), while the
smallest doll is the final recursive call made – the one that the stopping
condition tests True on, which tells that specific call of the function to
return. This in turn causes the next-to-last call of the function to return
(corresponding to the next larger doll, the one that the smallest doll is
directly inside of). One-by-one, each of the recursive function calls re-
turn as they cascade upward and out until the original function call re-
turns (the largest doll), and the process is complete.

CHAPTER 14: Recursion

148

FIGURE 14-6

Cantor Set

As a straightforward example of self-similarity that may be used toward great
musical effect, consider the Cantor Set shown below.

The steps required to create this self-similar design is as follows:

1. Start with a horizontal line segment.
2. Make a copy of this line immediately below it,
3. Divide the new line into three parts.
4. Remove the middle of the three parts - as shown in the first two steps of

the diagram above, we change from a single solid line to two smaller lines
with a space in the middle.

5. For each of the two lines just made, repeat from step 2 above

That’s it! That is all one needs to know (either a human or a computer), to
create the full design of the Cantor Set.

To apply this design toward an arrangement of sound clips in EarSketch, we
can use the line-by-line pattern of a Cantor Set to specify where sound clips
should be placed on consecutive EarSketch tracks, yielding something like this:

Cantor Set

149

FIGURE 14-7

As part of the code example for this section, we’ve created a function that
places sound clips on consecutive tracks in EarSketch, according to the pattern
of a Cantor Set.

makeCantorSet(musicList, 1, 1, 4, 4)
When calling the above function, we supply it with these parameters:

audioclips a list of audio clips (one for each track)

tracknum the track number we want it to start at

start the measure number we want it to start at

length the length of the full pattern in bars

depth a depth amount

The last parameter depth amount specifies the total number of tracks we

want the function to create, which corresponds to the same number of lines in
a Cantor set pattern (see the first diagram at the top).

audioMedia/1_CantorSetMix.mp3

init();
setTempo(135);

CHAPTER 14: Recursion

150

function makeCantorSet(audioclips, tracknum, start, length, depth) {
 // parameters: list of audio clips, starting track number, starting measure, total length of section (in measures), depth of recursion (number of tracks to create)

 if (depth == 0) return; // when depth reaches zero, exit the function

 fitMedia(audioclips[0], tracknum, start, start+length); // place the first audioclip of the list on the current track, starting at start and ending at start+length
 var smallerLength = length / 4.0; // calculate a new length value, for use for the two sound sections on the next track
 var secondSectionStart = start + (smallerLength * 3.0); // calculate the start of the second audio section on the next track
 // to make each of the two smaller sections on the next track, recursively call the function with updated tracknum, length, and depth parameter values

 makeCantorSet(audioclips.slice(1, audioclips.length), tracknum+1, start, smallerLength, depth-1); // create the first section on the next track
 makeCantorSet(audioclips.slice(1, audioclips.length), tracknum+1, secondSectionStart, smallerLength, depth-1); // create the second section on the next track
}

var soundList1 = [DUBSTEP_DRUMLOOP_MAIN_001, Y36_ELECTRO_1, DUBSTEP_BASS_WOBBLE_025, ELECTRO_ANALOGUE_LEAD_001, DUBSTEP_BASS_WOBBLE_025, ELECTRO_ANALOGUE_LEAD_001];
var soundList2 = [DUBSTEP_DRUMLOOP_MAIN_007, Y43_SYNTH_HARP_1, Y36_ELECTRO_1, Y35_ELECTRO_2, Y36_ELECTRO_1, Y35_ELECTRO_2];

makeCantorSet(soundList1, 1, 1, 4, 4);
makeCantorSet(soundList1, 1, 5, 4, 4);
makeCantorSet(soundList2, 1, 9, 4, 4);
makeCantorSet(soundList2, 1, 13, 4, 4);

fitMedia(Y35_ELECTRO_2, 5, 1, 9);
fitMedia(Y35_ELECTRO_3, 5, 9, 17);

finish();

We see that on lines 14 and 15, makeCantorSet() calls itself twice from
within itself. Thus makeCantorSet() is a recursive function, and its calls to
itself on lines 14 and 15 are recursive calls.

Notice that in this example, there is more than one recursive call used within
the definition of the function. These two recursive calls correspond to step 5 in
the Cantor Set design instructions at the top of the page: one recursive call for
each of the two new lines just created in step 4. And since there are two recur-
sive calls here, each level of recursion has two times the number of recursive
calls as the preceding level, shown by each level of the Cantor Set pattern – see
both diagrams above !

The Thue-Morse Sequence
Binary numbers, the basic language of all computers and digital systems, are
made up of just zeros and ones in various patterns.

Cantor Set

151

The value of a single binary digit is either a zero or a one. These two possible
values may also be thought of as False (0) and True (1).

We can take the complement of any binary digit, which means to change it
to its opposite value (0 becomes 1, while 1 becomes 0…that’s it!).
When using a binary sequence to define a rhythm, we can treat every zero value
as a rest, and every value of one as a note or audio clip.

We will see this ahead shortly.
The Thue-Morse sequence is a binary sequence (just zeros and ones), which

never fully repeats. Thus it is theoretically infinite!
It does have an elegant and striking self-similar pattern though, which

makes it great to use for making musical rhythms that never fully loop or re-
peat, but that maintain a good balance between some repetition and some
change. Here we build up this sequence as a string of zeros and ones.
This unique sequence is constructed by following a few simple steps:

1. Start with the two digit string, ’01′.
2. Replace every ’0′ in the string by ’01′, and replace every ’1′ in the string

by ’10′
3. With the newly-created string from the previous step, go back to the be-

ginning of step 2, and replace each ’0′ and ’1′ with the same values as be-
fore.

Here’s what we get for the first few results of applying the above pattern:
’01′ ->

’0110′ ->
’01101001′ ->
’0110100110010110′ ->

There are some very cool properties of this pattern.

First of all, there is another way to construct this pattern besides the above
steps:

Start with ’01′ again, find its complement (see above), and put it directly
after.

’01′ –get_complement–> ’10′ –place_it_after_the_original–> ’0110‘ (see the
original in regular text and its complement directly after it in boldface).

Notice that the result above is the same as the second line in the original
method above.

You get the picture.. If we take the complement of the new string and put it
after it, we’ll get ’0110 1001‘.

These are the two ways to construct the Thue-Morse sequence, but there is
one more interesting property worth mentioning:

You can form a string of every other digit of the Thue-Morse sequence.
Start with the first digit at the beginning of your created Thue-Morse string, and

CHAPTER 14: Recursion

152

take every other digit until you have a string of any length n you wish.
This length n string of every other digit of the TM-sequence will be the same
exact string as the first n values of the original sequence!

We have just shown above the basic self-similar design pattern of the Thue-
Morse sequence.

The coexistence of its special properties give this interesting sequence its
uniqueness, and make it good musical material for use within an EarSketch
script.

In our code example below, we will need to use an integer parameter n
(depth of recursion) and a stopping condition (if n == 0) to specify and control
how many times the above pattern recurses (repeats in on itself).

After listening to the audio example below, read over the code, then work
through the diagram and its explanation while referring back to the code.
This will provide a solid understanding of how recursion is working to construct
this sequence.
Then run the script in EarSketch. Follow the comments in the code to see how
you can apply the Thue-Morse sequence to create interesting non-repeating
rhythmic parts.

Start modifying some of the code to make your own piece:

• You can change the sounds
• You can use the thuemorse() function with a different number for the

input parameter
• You can extract different substrings from the string created by thue-
morse() and supply these different substrings as “rhythm-strings” to dif-
ferent calls to makeBeat(), similar to what is shown in the code example
below (at lines 36 & 37).

audioMedia/2_ThueMorseSequence.mp3

init();

setTempo(135);

// this self-similar recursive function creates the Thue-Morse sequence

function thuemorse(n) {
 if (n == 0) {
 return '0';
 }
 var oldstring = thuemorse(n-1);
 var newstring = '';
 for (var i = 0; i < oldstring.length; i++) {

Cantor Set

153

 if (oldstring[i] == '0') {
 newstring = newstring + '01';
 } else newstring = newstring + '10';
 }
 return newstring;
}

// sounds and data used in the piece

var drumloop = DUBSTEP_DRUMLOOP_MAIN_001;
var soundList1 = [Y51_PERCUSSION_1, Y62_PERCUSSION_2];
var soundList2 = [TECHNO_ACIDBASS_011, Y04_DRUMS_SAMPLE_1]; // Y35_ELECTRO_2 HIPHOP_SYNTHBASS001

var rhythmString = thuemorse(7);

// the thuemorse() function with a depth parameter of 7 generates a string of length 128, since 2 to the 7th power = 128 (2x2x2x2x2x2x2 = 128)
// since 128 consecutive 16th-notes lasts for eight measures of 4/4, the use in makeBeat() of the string created above will yield eight measures.

// code to generate piece

fitMedia(drumloop, 1, 1, 9);

makeBeat(soundList1, 2, 1, rhythmString.slice(0, 64)); // use first half of rhythmString for measures 1 through 4.
makeBeat(soundList2, 2, 5, rhythmString.slice(64, 128)); // change sounds, and use second half of rhythmString for measures 5 through 8.

finish();

How does the thuemorse() function use recursion to build up the binary
string that it returns?

Let’s say we call thuemorse(4). The first thing that is done is to test to see if
its input parameter is equal to zero (see code line 8 above).

Since 4 does not equal zero, the stopping condition fails and the program
moves to the next line of code (line 11).

Here, something interesting happens. A new variable named oldstring is
created to hold the result of a recursive call to thuemorse(3).

Since this recursive call is made here, the function needs to wait until thue-
morse(3) finishes and returns with a value, before continuing on to the next
line.

So we see here that thuemorse(4) is patiently waiting for thue-
morse(3) to return.

What is thuemorse(3) doing?
It tests to see if 3 is equal to 0 and since it isn’t, it creates the variable

called oldstring to hold the result of thuemorse(2) .

CHAPTER 14: Recursion

154

Hold on! I thought we’re already using a variable named oldstring. Why
does this work?

Remember that each call to a function establishes a scope that is just for
that particular call of the function. Each time a recursive call is made here
to thuemorse(), a new scope is created to keep track of what’s going on just
inside that one particular call. The variable named oldstring that is created
by thuemorse(3) is a totally different variable than the oldstring that was
created by thuemorse(4). This is because they each exist inside a different
scope.

Say for example you have two friends (Joe A and Joe B), who live on differ-
ent streets (Avenue A and Avenue B).

When you are on Avenue A, you ask if anyone has seen Joe, and it is under-
stood that you are looking for Joe A.

If you go over to Avenue B and ask for Joe, it’s understood there that you are
looking for Joe B.

This is because Joe B is local to Avenue B, and Joe A is local to Avenue A.
It’s the same concept when thinking about scope:

Variables which have the same name (joe), but which are each local to the
scope of a different function call (joe from Avenue A vs. joe from Avenue B) are
actually different individual variables!
Remembering our local variable oldstring in the thuemorse() function, we
can say that it has the same properties as “joe” in the above story.

Each call to thuemorse() will create and use a new variable named old-
string, which remains totally separate from any other variables named old-
string that were created by other calls to thuemorse().

We see that the oldstring that is local to thuemorse(3) is waiting
for thuemorse(2) to return, before thuemorse(3) can continue.

I think we know what’s going to happen next. Follow the diagram below
(down the left side, across, then up the right side) to quickly see what is going
on.

Cantor Set

155

FIGURE 14-8

Notice that each time an oldstring variable is created, it is shown in a new

color to emphasize that it is a brand new variable, totally separate from any
other oldstring of a different color.

The function keeps recursing like it’s shown in the diagram below, until the
stopping condition succeeds when thuemorse(0) is called. In line 9 of the
code, it shows that thuemorse(0) returns the string ’0′.

Since thuemorse(1) left off with its oldstring waiting for the return value
of thuemorse(0), this oldstring gets as its value the ’0′ that was returned
by thuemorse(0).

Now the rest of the code in the function can be worked through for thue-
morse(1). First we create a new variable which will hold some new informa-
tion that will be created ahead. We call this new variable newstring, and initi-
alize it with an empty string.

Next each single character of oldstring is tested to see if it’s a 0 or 1, and
its corresponding two character string is added on to newstring. This is the
way that the Thue-Morse string is actually created.

Remember that we left off in thuemorse(1), working our way back up the
right-hand-side of the diagram. Since the local variable oldstring is ’0′, the lo-
cal variable newstring gets the value ’01′ which is returned as the result of the
call to thuemorse(1).

Who does it get returned to? It gets returned to whomever called it! Specifi-
cally, thuemorse(1) was called by the line 11 of thuemorse(2), which has
been waiting for thuemorse(1) to return with a value.

Since thuemorse(1) returns with the string ’01′, this value gets assigned to

the oldstring variable that is local to thuemorse(2). Now thue-

CHAPTER 14: Recursion

156

FIGURE 14-9

created by André
Karwath
– from Wikipedia
– used with
permission through
Creative Commons
free-use license

morse(2) continues on through the rest of its code, which results in another
new local variable called newstring getting the next level expansion of ’01′,
which turns out to be ’0110′.
This value of newstring gets returned as the value of thuemorse(2), and as-
signed to the oldstring local variable of thuemorse(3), then thue-
morse(3) continues on through the rest of its code.

This repeated pattern happens here one more time, until the original, non-
recursive call to thuemorse(4) is returned, retuning the val-
ue ’0110100110010110′, and the function is done.

It is interesting to note that a call to thuemorse(n), with any number for n,
works in the same way as a call to thuemorse(4) – the function keeps recurs-
ing until the stopping condition succeeds (this is called the base case). The
base case, here thuemorse(0), returns with a value, and supplies that to the
function which called it, and so on, all the way back up the right-hand-side of
the diagram, the string doubling in length each time, until the final string is re-
turned as the value of the original call.

Noting that the string doubles in length each time, we can see that a call
to thuemorse(8) for instance, will return a string of 256 characters (2 to the
8th power). This could be used as a rhythm string for 16 bars of 16th notes, or
divided up into substrings.

The Towers of Hanoi

Cantor Set

157

FIGURE 14-10

created by
Wikipedia user
Evanherk
– From Wikipedia
– Used with
permission
through Creative
Commons free-
use license

The “Towers of Hanoi” is a interesting puzzle that is often used to teach
about recursion.

Its setup is simple:
There are three separate pegs, and a certain number of disks on the first peg.

The disks are stacked in order of decreasing size from bottom to top.
The goal is to move all the disks to one of the two empty pegs, and having them
end up in the same order as they began in (from smallest to largest, moving
from top to bottom).

The three rules are:
Only one disk may be moved at a time.
Only the top-most disk of any peg can be moved.
A larger disk can never be placed on top of a smaller disk.

Solving the puzzle looks something like this (using three spaces instead of
pegs):

Notice how a larger disk is never placed on top of a smaller disk.
The series of moves that is required to place all the disks in the upright tow-

er configuration is called the solution to the puzzle.
The series of moves that is required to place all the disks in the upright tow-

er configuration is called the solution to the puzzle.
Each move can be represented by a two-element array in JavaScript: [2, 3]

means that a disk moves from peg 2 to peg 3.
We can create great music from the solution to this puzzle by choosing three

audio clips from the library (one for each peg), and letting the sequence of
moves from the correct solution be used to choose from the three audio clips in
the same order as how the disks move from peg to peg.

CHAPTER 14: Recursion

158

This is very easy to do, because the final solution is just a list of numbers,
which we can use directly to “play the clips”. We will see this ahead shortly.

In the code example below, we provide a standard recursive solution to this
popular puzzle.

The recursive function here is the hanoi_move() function, which solves the
puzzle completely using the power of recursion.

The output of hanoi_move() is an array, where each group of two values in
the array represents a move from one peg to another. For example, [2, 3, 1, 2] is
an array of two moves, one from peg 2 to peg 3, and the following move from
peg 1 to peg 2.

Thus all the moves that make up the solution are given in order by the array
returned by hanoi_move().

This array of moves in order is used inside of the towers_of_hanoi_string()
function as material to convert into a string representation that will choose one
of three audio clips (given by the sequence of moves returned by hanoi_move())
according to a steady 8th-note rhythm.

We achieve this by simply using the output of towers_of_hanoi_string() as a
beat-string for makeBeat().

We then split this beat-string in two halves, and use the first half to supply
the beat-string for the first call to makeBeat(), and then use the second half of
the string as the beat-string for a second call to makeBeat(), which uses a differ-
ent sound for the second half of the musical example.

As in the previous section, listen to the audio example below, then follow the
comments in the provided code to understand and learn how to use the tow-
ers_of_hanoi_string() function to create interesting music that doesn’t repeat,
but often makes sense on some higher level. Play around with different values,
sounds, substrings and assignments as before, and create your own unique
piece in EarSketch by modifying and extending the example below.
audioMedia/3_Towers_of_Hanoi.mp3

init();
setTempo(135);

// functions

function hanoi_move(n, frm, dest, via, sequence_of_moves) {
 // parameters: n (number of pegs), the number of the peg you're moving from...
 // the number of the peg you're moving to, the number of the other peg, and the collecting array of moves
 if (n == 1) {
 // append current move (from-peg, to-peg) to sequence_of_moves array
 sequence_of_moves.push(frm);
 sequence_of_moves.push(dest);
 }
 else {

Cantor Set

159

 hanoi_move(n-1, frm, via, dest, sequence_of_moves);
 hanoi_move(1, frm, dest, via, sequence_of_moves);
 hanoi_move(n-1, via, dest, frm, sequence_of_moves);
 }
}

function towers_of_hanoi_string(n) {
 var results = []; // create an array to collect the resulting sequence of hanoi moves
 // call the recursive function with n, and 0, 1, & 2 as names of the three pegs...
 // also include the presently empty "results" array to collect the moves.
 hanoi_move(n, 0, 1, 2, results);
 var beatString = ""; // create an empty string
 // for each element in the results array...
 // convert the peg number to a string, add a "+" to it (for extending a sound in makeBeat()), and append to the beatString
 for (var i = 0; i < results.length; i++) {
 var element = results[i];
 beatString += element.toString() + "+";
 }
 return beatString; // return string of hanoi moves
}

// sounds used in the piece

var drumloop = DUBSTEP_DRUMLOOP_MAIN_001;
var soundList1 = [EIGHT_BIT_ATARI_LEAD_001, DUBSTEP_BASS_WOBBLE_001, ELECTRO_DRUM_MAIN_BEAT_003];
var soundList2 = [EIGHT_BIT_ATARI_SFX_001, DUBSTEP_BASS_WOBBLE_015, ELECTRO_DRUM_MAIN_BEAT_004];

// code to generate piece

fitMedia(drumloop, 1, 1, 9);
// call makeBeat with the towers_of_hanoi_string function supplying the beat-string parameter
// Try using different numbers of rings for n in towers_of_hanoi_string(n) (2 <= n <= 5)

var a = towers_of_hanoi_string(5);

makeBeat(soundList1, 2, 1, towers_of_hanoi_string(5).slice(0, 64));
makeBeat(soundList2, 2, 5, towers_of_hanoi_string(5).slice(64, 128));

finish();

CHAPTER 14: Recursion

160

The EarSketch API

Click here to open the EarSketch API.

161

15

Every Effect Explained in Detail

BANDPASS

audioMedia/bandpass.mp3
BANDPASS is a filter that only passes (lets through) an adjustable-sized band

of frequencies. All other frequencies are suppressed. This can be used for
special-effect sounds such as the “megaphone” sound popular in some modern
rock music, or a telephone or small speaker sound, by greatly limiting the fre-
quency range of the original sound (by setting BANDPASS_WIDTH to a relatively
small value). By using a wider frequency range (setting BANDPASS_WIDTH to a
higher value), sounds that appear “too big” for a mix may be made to sound a
little smaller so that they blend better with other sounds in the mix.

Parameter Description
De-
fault
Value

min-
Val-
ue

maxVal-
ue Example

BAND-
PASS_FREQ

The center fre-
quency (in Hz) of
the window of
frequencies to
pass through.

800.0 20.0 20000.0

setEffect(1,
BANDPASS,
BAND-
PASS_FREQ,
200)

BAND-
PASS_WIDTH

The width (in Hz)
of the window of
frequencies to let
through.

0.5 0.0 1.0

setEffect(1,
BANDPASS,
BAND-
PASS_WIDTH,
0.3)

MIX

The percentage of
the effected
sound (wet) that
is mixed with the
original sound
(dry). At its mini-
mum value (0.0),

0.1 0.0 1.0
setEffect(1,
BANDPASS,
MIX, 0.3)

163

16

no effect can be
heard. At its maxi-
mum value (1.0),
none of the origi-
nal sound is
heard - it is all ef-
ffect.

BYPASS

whether the ef-
ffect is “on” (1.0)
or “off” (0.0). If
the bypass of an
effect is “on”
(1.0), that means
the audio going
into the effect
passes through,
and comes out
unaffected. Note
that unlike other
effect name/
parameter pairs,
the only valid val-
ues for BYPASS
are 0.0 and 1.0.

0.0 0.0 1.0
setEffect(1,
BANDPASS, BY-
PASS, 0.0)

CHORUS
audioMedia/chorus1.mp3

CHORUS creates various copies of the original sound which get varied slightly
in pitch and time, and mixed back in to the sound, creating an ensemble-like
effect of many voices playing together. At extreme values of parameter settings,
artificial “robot-like” sounds can be heard.

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

CHO-
RUS_LENGTH

The length of time
(in ms) from the
original sound
within which the
chorus effect is acti-
vated.

15.0 1.0 250.0

setEffect(1,
CHORUS, CHO-
RUS_LENGTH,
53.0)

CHO-
RUS_NUMVOI-
CES

The number of
copies of the origi-
nal sound that is
used. Larger values

1.0 1.0 8.0

setEffect(1,
CHORUS, CHO-
RUS_NUMVOI-
CES, 4.0)

CHAPTER 16: Every Effect Explained in Detail

164

create a bigger
ensemble-like ef-
ffect.

CHO-
RUS_RATE

The rate (in Hz)
which the pitch cy-
cles or “wobbles”
at. Lower values
create smoothly-
cycling sounds,
while higher values
create more
wobbly-sounding
effects.

0.5 0.1 16.0

setEffect(1,
CHORUS, CHO-
RUS_RATE,
3.0)

MIX

The percentage of
the effected sound
(wet) that is mixed
with the original
sound (dry). At its
minimum value
(0.0), no effect can
be heard. At its
maximum value
(1.0), none of the
original sound is
heard – it is all ef-
ffect.

1.0 0.0 1.0
setEffect(1,
CHORUS, MIX,
0.5)

CHO-
RUS_MOD

The depth of the
pitch wobbling (i.e.
how much pitch cy-
cling is used). Low
settings create a
more natural
sound, while higher
settings create a
more artificial-like
sound.

0.7 0.0 1.0
setEffect(1,
CHORUS, CHO-
RUS_MOD, 0.4)

COMPRESSOR

audioMedia/compressor.mp3
COMPRESSOR is a basic two-parameter compressor, which reduces the vol-

ume of the loudest sounds of the effected track, while amplifying the volume of
its quietest sounds. This creates a narrower dynamic range from the original
sound, and is often used to maximize the punch of the original sound, while re-
ducing the potential for noise to be added later.

Every Effect Explained in Detail

165

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

COMPRES-
SOR_THRESH-
OLD

The amplitude (vol-
ume) level (in dB)
above which the
compressor starts to
reduce volume.

0.0 -12.0 1.0

setEf-
fect(1, COM-
PRESSOR,
COMPRES-
SOR_THRESH-
OLD, -4.0)

COMPRES-
SOR_RATIO

The amount of speci-
fied gain reduction. A
ratio of 3:1 means
that if the original
sound is 3 dB over
the threshold, then
the effected sound
will be 1 dB over the
threshold.

1.0 1.0 20.0

setEf-
fect(1, COM-
PRESSOR,
COMPRES-
SOR_RATIO,
35.0)

BYPASS

Whether the effect is
“on” (1.0) or “off”
(0.0). If the bypass of
an effect is “on”
(1.0), that means the
audio going into the
effect passes
through, and comes
out unaffected. Note
that unlike other ef-
ffect name/parameter
pairs, the only valid
values for BYPASS
are 0.0 and 1.0.

0.0 0.0 1.0

setEf-
fect(1, COM-
PRESSOR, BY-
PASS, 1.0)

DELAY

audioMedia/delay2.mp3
DELAY creates a repeated echo-like delay of the original sound. A delay ef-

ffect plays back the original audio as well as a delayed, quieter version of the
original that sounds like an echo. After the first echo it plays an echo of the
echo (even quieter), then an echo of the echo of the echo (still quieter), and so
on until the echo dies out to nothing. With the delay effect, we can control how
much time passes between each echo (delay time). If we set the delay time to
match the length of a beat, we can create rhythmic effects with delay.

CHAPTER 16: Every Effect Explained in Detail

166

Parameter Description
De-
fault
Value

min-
Value

max-
Value Example

DE-
LAY_TIME

The time amount in
milliseconds (ms)
that the original track
is delayed, and the
time between succes-
sive repeats of the
delay.

300.0 0.0 4000.0

setEf-
fect(1, DE-
LAY, DE-
LAY_TIME,
1200.0)

DE-
LAY_FEED-
BACK

The relative amount
of repeats that the
delay generates.
Higher values create
more “echoes”. Be
careful of applying
“too much” feed-
back!

-3.0 -120.0 -1.0

setEf-
fect(1, DE-
LAY, DE-
LAY_FEED-
BACK,
-20.0)

MIX

The percentage of
the effected sound
(wet) that is mixed
with the original
sound (dry). At its
minimum value (0.0),
no effect can be
heard. At its maxi-
mum value (1.0),
none of the original
sound is heard - it is
all effect.

1.0 0.0 1.0

setEf-
fect(1, DE-
LAY, MIX,
0.4)

BYPASS

Whether the effect is
“on” (1.0) or “off”
(0.0). If the bypass of
an effect is “on” (1.0),
that means the audio
going into the effect
passes through, and
comes out unaffec-
ted. Note that unlike
other effect name/
parameter pairs, the
only valid values for
BYPASS are 0.0 and
1.0.

0.0 0.0 1.0

setEf-
fect(1, DE-
LAY, BY-
PASS, 1.0)

DISTORTION
audioMedia/distortion2.mp3

Every Effect Explained in Detail

167

DISTORTION creates a “dirty” or “fuzzy” sound by overdriving the original
sound. This compresses or clips the sound wave, adding overtones (higher fre-
quencies related to the original sound). It is common to distort an electric gui-
tar sound by “overdriving” the guitar amplifier. Modern music sometimes uses
distortion to add a grungy or gritty effect or feel to the composition.

Parame-
ter Description

De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

DIS-
TO_GAIN

The amount of overdrive
of the original sound. 20.0 0.0 50.0

setEf-
fect(1,
DISTOR-
TION, DIS-
TO_GAIN,
25.0)

MIX

The percentage of the ef-
fected sound (wet) that is
mixed with the original
sound (dry). At its mini-
mum value (0.0), no effect
can be heard. At its maxi-
mum value (1.0), none of
the original sound is
heard - it is all effect.

1.0 0.0 1.0

setEf-
fect(1,
DISTOR-
TION, MIX,
0.4)

BYPASS

Whether the effect is “on”
(1.0) or “off” (0.0). If the
bypass of an effect is “on”
(1.0), that means the au-
dio going into the effect
passes through, and
comes out unaffected.
Note that unlike other ef-
ffect name/parameter
pairs, the only valid val-
ues for BYPASS are 0.0
and 1.0.

0.0 0.0 1.0

setEf-
fect(1,
DISTOR-
TION, BY-
PASS, 1.0)

EQ3BAND
audioMedia/eq3band.mp3

EQ3BAND is a three-band equalizer used for simple EQ tasks. An equalizer is
used to adjust the volume of separate ranges of frequencies within an audio
track. This particular effect can be used to adjust the volume of three ranges
(“bands”) of frequency content, namely bass, midrange, and treble (low, mid,

CHAPTER 16: Every Effect Explained in Detail

168

high), where the upper border (EQ3BAND_LOWFREQ) of the low range and the
center frequency of the mid range (EQ3BAND_MIDFREQ) may be set by the user.

Parameter Description
De-
fault
Value

min-
Val-
ue

max-
Value Example

EQ3BAND_LOW-
GAIN

The gain (in
dB) of the
low range of
frequencies
of the EQ.
Negative val-
ues lower
the volume
of the low
frequencies,
while posi-
tive values
boost them.

0.0 -24.0 18.0

setEffect(1,
EQ3BAND,
EQ3BAND_LOW-
GAIN, 5.3)

EQ3BAND_LOW-
FREQ

Specifies the
highest fre-
quency (in
Hz) of the
low range.

200.0 20.0 20000.0

setEffect(1,
EQ3BAND,
EQ3BAND_LOW-
FREQ, 700.0)

EQ3BAND_MIDG-
AIN

The gain (in
dB) of the
mid range of
frequencies
of the EQ.
Negative val-
ues lower
the volume
of the mid
frequencies,
while posi-
tive values
boost them.

0.0 -24.0 18.0

setEffect(1,
EQ3BAND,
EQ3BAND_MIDG-
AIN, -15.0)

EQ3BAND_MID-
FREQ

Specifies the
center fre-
quency (in
Hz) of the
mid range.

2000.0 20.0 20000.0

setEffect(1,
EQ3BAND,
EQ3BAND_MID-
FREQ, 1200.0)

EQ3BAND_HIGH-
GAIN

The gain (in
dB) of the
high range of
frequencies
of the EQ.
Negative val-

0.0 -24.0 18.0

setEffect(1,
EQ3BAND,
EQ3BAND_HIGH-
GAIN, -15.0)

Every Effect Explained in Detail

169

ues lower
the volume
of the high
frequencies,
while posi-
tive values
boost them.

EQ3BAND_HIGH-
FREQ

Specifies the
cutoff fre-
quency (in
Hz) of the
high range.

2000.0 20.0 20000.0

setEffect(1,
EQ3BAND,
EQ3BAND_HIGH-
FREQ, 8000.0)

MIX

The percent-
age of the ef-
fected sound
(wet) that is
mixed with
the original
sound (dry).
At its mini-
mum value
(0.0), no ef-
ffect can be
heard. At its
maximum
value (1.0),
none of the
original
sound is
heard - it is
all effect.

1.0 0.0 1.0
setEffect(1,
EQ3BAND,
MIX, 0.4)

BYPASS

Whether the
effect is “on”
(1.0) or “off”
(0.0). If the
bypass of an
effect is “on”
(1.0), that
means the
audio going
into the ef-
ffect passes
through, and
comes out
unaffected.
Note that
unlike other
effect name/
parameter
pairs, the on-
ly valid val-
ues for BY-

0.0 0.0 1.0
setEffect(1,
EQ3BAND, BY-
PASS, 1.0)

CHAPTER 16: Every Effect Explained in Detail

170

PASS are 0.0
and 1.0.

FILTER
audioMedia/filter.mp3

FILTER is a standard low-pass filter with resonance. A low-pass filter effect
allows low frequency audio to pass through unchanged, while lowering the vol-
ume of the higher frequencies above a cutoff frequency (the FILTER_FREQ pa-
rameter). This gives the audio a “darker” sound.

Parameter Description
De-
fault
Value

min-
Val-
ue

max-
Value Example

FIL-
TER_FREQ

The cutoff frequency
(Hz), which means that
all frequencies higher
than this value are
rolled-off (become
lower and lower in vol-
ume the higher they
are from this value).

1000.0 20.0 20000.0

setEf-
fect(1,
FILTER,
FIL-
TER_FREQ,
3000.0)

FIL-
TER_RESO-
NANCE

The amount of amplifi-
cation of a narrow
band of frequencies
around the current
FILTER_FREQ level.
This causes the fre-
quencies around the
current FILTER_FREQ
level to ring out more,
to sound more “reso-
nant”. It effectively
creates a more vi-
brant, ringing sound
around the cutoff fre-
quency (FIL-
TER_FREQ). Higher val-
ues of resonance will
make the filter “sharp-
er” around the FIL-
TER_FREQ, which ac-
centuates the frequen-
cies closest to the cut-
off frequency. This is a
subtle parameter that

0.8 0.0 1.0

setEf-
fect(1,
FILTER,
FILTER_RES-
ONANCE,
0.0, 1.0,
0.9, 3.0)

Every Effect Explained in Detail

171

helps fine-tune the
sound of the filter.

MIX

The percentage of the
effected sound (wet)
that is mixed with the
original sound (dry). At
its minimum value
(0.0), no effect can be
heard. At its maximum
value (1.0), none of the
original sound is heard
- it is all effect.

1.0 0.0 1.0

setEf-
fect(1,
FILTER,
MIX, 0.4)

BYPASS

Whether the effect is
“on” (1.0) or “off” (0.0).
If the bypass of an ef-
ffect is “on” (1.0), that
means the audio going
into the effect passes
through, and comes
out unaffected. Note
that unlike other effect
name/parameter
pairs, the only valid
values for BYPASS are
0.0 and 1.0.

0.0 0.0 1.0

setEf-
fect(1,
FILTER, BY-
PASS, 1.0)

FLANGER
audioMedia/flanger.mp3

FLANGER is similar to a chorus effect, where various copies of the original
sound are created which get varied slightly in pitch and time, and mixed back in
to the sound. A flanger, however, uses a much finer range of time values, which
creates an evolving “whoosh” like sound. At extreme values of parameter set-
tings, more artificial “robot-like” sounds can be heard.

Parameter Description
De-
fault
Val-
ue

min-
Value

max-
Value Example

FLANG-
ER_LENGTH

The length of delay
time (in ms) from the
original sound within
which the flanger ef-
ffect is activated.

6.0 0.0 200.0

setEf-
fect(1,
FLANGER,
FLANG-
ER_LENGTH,
23.0)

CHAPTER 16: Every Effect Explained in Detail

172

FLANG-
ER_FEED-
BACK

The amount (in dB)
that the effected
sound is “fed back”
into the effect. Higher
values create more
artificial-like sounds.

-50.0 -80.0 -1.0

setEf-
fect(1,
FLANGER,
FLANG-
ER_FEED-
BACK, -80.0)

FLANG-
ER_RATE

The rate (in Hz) which
the pitch cycles or
“whooshes” at. Lower
values create more
smoothly-cycling
sounds, while higher
values create more
whooshing-sounding
effects and sonic arti-
facts.

0.6 0.001 100.0

setEf-
fect(1,
FLANGER,
FLANG-
ER_RATE,
45.0)

MIX

The percentage of the
effected sound (wet)
that is mixed with the
original sound (dry).
At its minimum value
(0.0), no effect can be
heard. At its maxi-
mum value (1.0), none
of the original sound
is heard - it is all ef-
ffect.

1.0 0.0 1.0

setEf-
fect(1,
FLANGER,
MIX, 0.4)

BYPASS

Whether the effect is
“on” (1.0) or “off”
(0.0). If the bypass of
an effect is “on” (1.0),
that means the audio
going into the effect
passes through, and
comes out unaffected.
Note that unlike other
effect name/parame-
ter pairs, the only val-
id values for BYPASS
are 0.0 and 1.0.

0.0 0.0 1.0

setEf-
fect(1,
FLANGER, BY-
PASS, 1.0)

PAN
audioMedia/pan2.mp3

PAN affects the audio mix between the left and right channels. For example,
if you were wearing headphones, changing the panning would affect whether
you heard something in the left ear or the right.

Every Effect Explained in Detail

173

Parameter Description
De-
fault
Val-
ue

min-
Value

max-
Value Example

LEFT_RIGHT

Specifies the left/
right location of the
original sound with-
in the stereo field
(0.0 is center, -100.0
is fully left, 100.0 is
fully right).

0.0 -100.0 100.0

setEffect(1,
PAN,
LEFT_RIGHT,
-50.0)

BYPASS

Whether the effect is
“on” (1.0) or “off”
(0.0). If the bypass
of an effect is “on”
(1.0), that means
the audio going into
the effect passes
through, and comes
out unaffected.
Note that unlike
other effect name/
parameter pairs, the
only valid values for
BYPASS are 0.0 and
1.0.

0.0 0.0 1.0
setEffect(1,
PAN, BYPASS,
1.0)

PHASER
audioMedia/phaser.mp3

PHASER is a sweeping-sounding effect which creates a copy of the original
sound over a specified range of frequencies. This effected copy is then delayed
very slightly and played against the original sound while changing its slight de-
lay time gently back and forth. This causes some of the copied frequencies to
temporarily cancel each other out by going “in and out of phase” with each oth-
er, thus creating a sweeping effect.

Parameter Description
De-
fault
Value

min-
Value

maxVal-
ue Example

PHAS-
ER_RATE

The rate (in Hz) that
the slight delay time
changes back and
forth. Lower values
create more
smoothly-cycling

0.5 0.0 10.0

setEf-
fect(1,
PHASER,
PHAS-
ER_RATE,
3.0)

CHAPTER 16: Every Effect Explained in Detail

174

sounds, while higher
values create more
robotic-sounding ef-
ffects and sonic arti-
facts.

PHAS-
ER_RAN-
GEMIN

The low value (in Hz)
of the affected fre-
quency range.

440.0 40.0 20000.0

setEf-
fect(1,
PHASER,
PHASER_RAN-
GEMIN,
880.0)

PHAS-
ER_RAN-
GEMAX

The high value (in
Hz) of the affected
frequency range.

1600.0 40.0 20000.0

setEf-
fect(1,
PHASER,
PHASER_RAN-
GEMAX,
1700.0)

PHAS-
ER_FEED-
BACK

The amount that the
effected sound is
“fed back” into the
effect. Higher values
create more
artificial-like sounds.

-3.0 -120.0 -1.0

setEf-
fect(1,
PHASER,
PHAS-
ER_FEED-
BACK, -1.0)

MIX

The percentage of
the effected sound
(wet) that is mixed
with the original
sound (dry). At its
minimum value (0.0),
no effect can be
heard. At its maxi-
mum value (1.0),
none of the original
sound is heard - it is
all effect.

1.0 0.0 1.0

setEf-
fect(1,
PHASER,
MIX, 0.4)

BYPASS

Whether the effect is
“on” (1.0) or “off”
(0.0). If the bypass of
an effect is “on”
(1.0), that means the
audio going into the
effect passes
through, and comes
out unaffected. Note
that unlike other ef-
ffect name/parameter
pairs, the only valid

0.0 0.0 1.0

setEf-
fect(1,
PHASER, BY-
PASS, 1.0)

Every Effect Explained in Detail

175

values for BYPASS
are 0.0 and 1.0.

PITCHSHIFT
audioMedia/pitchshift1.mp3

PITCHSHIFT simply lowers or raises the sound by a specific pitch interval
(PITCHSHIFT_SHIFT). It can be useful in helping multiple sound files sound
better together or, contrastingly, to add a little bit of dissonance, if desired.

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Val-
ue

Example

PITCH-
SHIFT_SHIFT

Specifies the
amount to adjust
the pitch of the
original sound in
semitones (and
fractions of a semi-
tone, given by val-
ues after the deci-
mal point). 12 sem-
itones equal 1 oc-
tave.

0.0 -12.0 12.0

setEffect(1,
PITCHSHIFT,
PITCH-
SHIFT_SHIFT,
4.0)

BYPASS

Whether the effect
is “on” (1.0) or “off”
(0.0). If the bypass
of an effect is “on”
(1.0), that means
the audio going in-
to the effect passes
through, and
comes out unaffec-
ted. Note that un-
like other effect
name/parameter
pairs, the only valid
values for BYPASS
are 0.0 and 1.0.

0.0 0.0 1.0
setEffect(1,
PITCHSHIFT,
BYPASS, 1.0)

REVERB
audioMedia/reverb.mp3

CHAPTER 16: Every Effect Explained in Detail

176

REVERB adds a slowly decaying ambiance to the source signal, which is simi-
lar to DELAY but is often much denser and richer. It is widely used for audio mix-
ing and spatialization.

Parameter Description Default
Value

min-
Value

max-
Value Example

RE-
VERB_TIME

The decaying time
of the ambiance
in milliseconds
(ms). When modu-
lating RE-
VERB_TIME over
time using auto-
mation curve, due
to the nature of
convolution-
based reverb, the
value is updated
only at every
quarter note
(time=0.25) in a
“stair-case” man-
ner from the start-
ing point of the
automation. (You
will, however,
hardly notice
that.)

1500.0 100.0 4000.0

setEf-
fect(1, RE-
VERB, RE-
VERB_TIME,
1000.0)

RE-
VERB_DAMP-
FREQ

The cutoff fre-
quency (in Hz) of
the lowpass filter
applied to the am-
biance. The lower
the value, the
darker the rever-
beration will
sound.

10000.0 200.0 18000.0

setEf-
fect(1, RE-
VERB, RE-
VERB_DAMP-
FREQ,
1500.0)

MIX

The percentage of
the effected
sound (wet) that
is mixed with the
original sound
(dry). At its mini-
mum value (0.0),
no effect can be
heard. At its maxi-
mum value (1.0),
none of the origi-
nal sound is heard
- it is all effect.

0.3 0.0 1.0

setEf-
fect(1, RE-
VERB, MIX,
0.4)

Every Effect Explained in Detail

177

BYPASS

Whether the effect
is “on” (1.0) or
“off” (0.0). If the
bypass of an ef-
ffect is “on” (1.0),
that means the
audio going into
the effect passes
through, and
comes out unaf-
fected. Note that
unlike other effect
name/parameter
pairs, the only val-
id values for BY-
PASS are 0.0 and
1.0.

0.0 0.0 1.0

setEf-
fect(1, RE-
VERB, BY-
PASS, 1.0)

RINGMOD
audioMedia/ringmod.mp3

RINGMOD multiplies the signals from two sounds together: your original
sound and a pure sine wave (that sounds like a tuning fork). The effect of this
multiplication sounds different at every frequency of the original sound, which
creates a completely artificial-sounding result, as this type of sound could nev-
er occur naturally. Some parameter settings for this effect will likely produce
recognizable-sounding effects similar to ones used in old science-fiction mov-
ies. It is useful experimenting with since there are a wide range of sounds that
can be generated from your original sound.

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

RING-
MOD_MOD-
FREQ

The frequency (in Hz) of
the sine wave oscillator
that is being multiplied
into your original
sound.

40.0 0.0 100.0

setEf-
fect(1,
RINGMOD,
RING-
MOD_MOD-
FREQ, 70.0)

RING-
MOD_FEED-
BACK

The amount of effected
sound that is fed-back
into the effect. High val-
ues create more
robotic-type sounds
and sonic artifacts.

0.0 0.0 100.0 setEf-
fect(1,
RINGMOD,
RING-

CHAPTER 16: Every Effect Explained in Detail

178

MOD_FEED-
BACK, 30.0)

MIX

The percentage of the
effected sound (wet)
that is mixed with the
original sound (dry). At
its minimum value (0.0),
no effect can be heard.
At its maximum value
(1.0), none of the origi-
nal sound is heard - it is
all effect.

1.0 0.0 1.0

setEf-
fect(1,
RINGMOD,
MIX, 0.4)

BYPASS

Whether the effect is
“on” (1.0) or “off” (0.0).
If the bypass of an ef-
ffect is “on” (1.0), that
means the audio going
into the effect passes
through, and comes out
unaffected. Note that
unlike other effect
name/parameter pairs,
the only valid values for
BYPASS are 0.0 and 1.0.

0.0 0.0 1.0

setEf-
fect(1,
RINGMOD,
BYPASS,
1.0)

TREMOLO
audioMedia/tremolo.mp3

TREMOLO quickly changes the volume of the original sound back and forth
from its original value towards silence, resulting in a wobbling-sounding effect.

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

TREMO-
LO_FREQ

The rate (in Hz)
that the volume is
changed back and
forth.

4.0 0.0 100.0

setEffect(1,
TREMOLO,
TREMO-
LO_FREQ,
10.0)

TREMO-
LO_AMOUNT

The amount (in
dB) that the vol-
ume changes back
and forth over dur-
ing each cycle.

-6.0 -60.0 0.0

setEffect(1,
TREMOLO,
TREMO-
LO_AMOUNT,
-40.0)

Every Effect Explained in Detail

179

MIX

The percentage of
the effected sound
(wet) that is mixed
with the original
sound (dry). At its
minimum value
(0.0), no effect can
be heard. At its
maximum value
(1.0), none of the
original sound is
heard - it is all ef-
ffect.

1.0 0.0 1.0
setEffect(1,
TREMOLO,
MIX, 0.4)

BYPASS

Whether the effect
is “on” (1.0) or
“off” (0.0). If the
bypass of an effect
is “on” (1.0), that
means the audio
going into the ef-
ffect passes
through, and
comes out unaf-
fected. Note that
unlike other effect
name/parameter
pairs, the only val-
id values for BY-
PASS are 0.0 and
1.0.

0.0 0.0 1.0
setEffect(1,
TREMOLO, BY-
PASS, 1.0)

VOLUME
audioMedia/volume2.mp3

VOLUME allows you to change the volume of an audio clip.

Pa-
rame-
ter

Description
De-
fault
Value

min-
Value

max-
Value Example

GAIN Specifies the output volume
level of the original sound. 0.0 -60.0 12.0

setEf-
fect(1,
VOLUME,
GAIN, -5.0)

BY-
PASS

Whether the effect is “on”
(1.0) or “off” (0.0). If the by-
pass of an effect is “on”
(1.0), that means the audio

0.0 0.0 1.0

setEf-
fect(1,
VOLUME, BY-
PASS, 1.0)

CHAPTER 16: Every Effect Explained in Detail

180

going into the effect passes
through, and comes out un-
affected. Note that unlike
other effect name/parame-
ter pairs, the only valid val-
ues for BYPASS are 0.0 and
1.0.

WAH
audioMedia/wah.mp3

WAH is a resonant bandpass filter (see BANDPASS effect) that creates a “wah-
wah” pedal sound when changed over time using envelopes in the setEffect()
function.

Parameter Description
De-
fault
Val-
ue

min-
Val-
ue

max-
Value Example

WAH_PO-
SITION

The center frequency of
the boosted fixed-width
frequency range.

0.0 0.0 1.0

setEf-
fect(1,
WAH,
WAH_POSI-
TION, 0.3)

MIX

The percentage of the ef-
fected sound (wet) that is
mixed with the original
sound (dry). At its mini-
mum value (0.0), no effect
can be heard. At its maxi-
mum value (1.0), none of
the original sound is heard
- it is all effect.

1.0 0.0 1.0

setEf-
fect(1,
WAH, MIX,
0.4)

BYPASS

Whether the effect is “on”
(1.0) or “off” (0.0). If the by-
pass of an effect is “on”
(1.0), that means the audio
going into the effect pass-
es through, and comes out
unaffected. Note that un-
like other effect name/
parameter pairs, the only
valid values for BYPASS are
0.0 and 1.0.

0.0 0.0 1.0

setEf-
fect(1,
WAH, BY-
PASS, 1.0)

Every Effect Explained in Detail

181

Analysis Features

This document details each of the Analysis features that can be used with the
analysis functions in the EarSketch API (analyze(), analyzeForTime(),
analyzeTrack(), and analyzeTrackForTime()). Each of these fea-
tures can be used by using the appropriate constant (which is specified with
each description). These features are possible ways to determine differences
in audio samples. This difference, or timbre, is how humans are able to tell
the difference between instruments. For example, it’s possible to distinguish
between playing a C note on a piano, from a C note on a trombone. Each of
these measurements returns a value between 0.0 and 1.0, and it is encour-
aged to try out different features if one does not work for your particular sit-
uation.

The examples below only use the maximum and minimum examples in the
YOUNGGURU__Y04_88_BPM_F_MINOR folder. For some of the examples, there
might be other sound files the exhibit a higher or lower value than the example
listed.

Spectral Centroid
constant – SPECTRAL_CENTROID

description – The average frequency of the audio. It describes the brightness
of the sound. An instrument like a tuba or bass guitar will have a lower Spectral
Centroid than an instrument like a violin. From the graphs below you will see
that a spectrum with a lower Spectral Centroid value has more frequency con-
tent in the lower part of the spectrum, while a higher value is more spread out.
In these examples, you can see that the Y04_BASS_1 audio file’s lower frequen-
cies weight the Spectral Centroid value towards a lower value.

For more information, see this Wikipedia article: http://en.wikipedia.org/
wiki/Spectral_centroid
Spectrum of a low Spectral Centroid value:
audioMedia/Y04-bass-1.mp3

183

17

http://en.wikipedia.org/wiki/Spectral_centroid
http://en.wikipedia.org/wiki/Spectral_centroid

FIGURE 17-1

Low Spectral
Centroid

FIGURE 17-2

High Spectral
Centroid

Spectrum of a high Spectral Centroid value:
audioMedia/Y04-Tambourine-Shaker-1.mp3

RMS Amplitude
constant – RMS_AMPLITUDE

description – The Root Mean Square amplitude of the audio. This is a more
convenient representation of the amplitude (or loudness) of an audio signal. It
is important to be careful of the sounds you analyze with this feature, because
it’s an average amplitude measurement. If an audio file, such as Y04_TAMBOUR-

CHAPTER 17: Analysis Features

184

FIGURE 17-3

Low RMS Amplitude

INE_SHAKER_1 has only a small amount of non-silence in it, then the average
amplitude will be small in comparison to its peak amplitude.

In the examples below, the red line indicates the RMS Amplitude value de-
tected using the analyze() function. If you are more interested in the ampli-
tude at specific times, analyzeForTime() might be a better function to use.

There are many ways to represent the amplitude of an audio signal, see this
Wikipedia article for more information: http://en.wikipedia.org/wiki/Ampli-
tude
Time vs. Amplitude plot of a low RMS Amplitude value:
audioMedia/Y04-Tambourine-Shaker-1.mp3

Time vs. Amplitude plot of a high RMS Amplitude value:
audioMedia/Y04-bass-1.mp3

Analysis Features

185

http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Amplitude

FIGURE 17-4

High RMS Amplitude

CHAPTER 17: Analysis Features

186

Creating Beats with makeBeat

The 16 elements of a beat string make up the 16 sixteenth notes found in one
measure of 4/4 time. In creating beats with makeBeat() the style, instrument,
and role of the beat should be taken into consideration in creating the rhythm
pattern. This guide will provide sample rhythm patterns in the style of 4/4
Time, Hip Hop, Funk, Dub Step, and African Drum Ensemble based patterns.
This will not represent a complete list of patterns, rather it will act as a guide
in identifying the characteristics of percussion beats and provide string exam-
ple for makeBeat().

The three elements of a percussion line
The drum set or percussion line can be divided into three elements:

1. Bass Drum or Lowest Pitched Drum: Usually provides the “center of
beat.” The ear will gravitate towards the lowest pitches in a drum pattern
to ‘center in’ on the meter and feel for the music. Bass Drum beats usual-
ly emphasize beats 1 and 3 in 4/4 time.

2. Back Beat: This is usually a snare drum, clap, snap, or other mid-pitched
percussion instrument. The Back Beats complement the Bass Drum Line,
provide syncopation and ‘pull’, and emphasize beats 2 and 4 in 4/4 time.
The Bass Drum and BackBeat work together to provide the bulk of the
sense of style and feel in percussion lines.

3. Running 8th or 16th Patterns. These running lines of 8th or 16th notes usu-
ally are played with a high pitched metallic instrument such as a Hi Hat,
Ride Cymbal, Tambourine, or other non-pitched instrument. The ‘run-
ning’ pattern provides a ‘motor’ that lays down a foundation for the Bass
Drum and Back Beat lines. The running patterns also provide the listener
with a clear sense of the ‘microbeat’ and meter for the music. Changing
the timbre within the running pattern (Closed and Open Hi hat for exam-
ple) can supplement the rhythmic interest of the Back Beat.

At the core level you can visualize the Bass Drum, Back Beat, and Running
8th / 16th in the following manner with makeBeat(). Note: the beat strings in the
following tables have spaces in between each character in order to ensure

187

18

proper display in a web browser (e.g., “– – – –”). Remove the extraneous spaces
when using the strings in your own code.

Bass Drum:

 Beats

String Pattern 1 2 3 4

“0 + + + – – – – 0 + + + – – – –” 0 + + + – – – – 0 + + + – – – –

Back Beat:

 Beats

String Pattern 1 2 3 4

“– – – – 0 + + + – – – – 0 + + +” – – – – 0 + + + – – – – 0 + + +

Running 8th:

 Beats

String Pattern 1 2 3 4

“0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +” 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +

4/4 Time General Patterns (Typical of “Rock Beat”
or straight 4/4 type music)
Bass Drum String Patterns:

bassBeat01 = “0 + + + – – – – 0 + + + – – – –”
bassBeat02 = “0 + + + – – 0 + 0 + + + – – – –”
“0 + + + – – 0 + 0 + + + – – 0 +”
“0 + + + 0 + + + 0 + + + 0 + + +”
“0 + + + 0 + + + 0 + 0 + 0 + + +”
“0 + + + 0 + + + 0 + + + 0 + 0 +”
Back Beat String Patterns:
“– – – – 0 + + + – – – – 0 + + +”
“– – – – 0 + + + – – – – 0 + 0 +”

CHAPTER 18: Creating Beats with makeBeat

188

“– – – – 0 + 0 + – – – – 0 + + +”
“– – – – 0 + + + – 0 + – 0 + + +”
8th Note Running Pattern:
“ 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +”
Code Example with Fill:

// 4/4 Time General Pattern with Fill
// Tempo Best between 110 and 132

init();
setTempo(120);

var bass = OS_LOWTOM01;
var snare = OS_SNARE01;
var hiOpen = OS_OPENHAT01;
var hiClosed = OS_CLOSEDHAT01;
var bassBeat = "0+++--0+0+++----";
var snareBeat = "----0+++-0+-0+++";
var running = "0+0+0+0+0+0+0+0+";
var fillBass = "0+++0+++0+0+0+0+";
var fillSnare = "0+++0+++0+0+0000";

for(var measure = 1; measure < 9; measure++) {

 if(measure % 4 != 0) {
 makeBeat(hiClosed, 1, measure, running);
 makeBeat(snare, 2, measure, snareBeat);
 makeBeat(bass, 3, measure, bassBeat);
 }
 else {
 makeBeat(hiClosed, 1, measure, running);
 makeBeat(snare, 2, measure, fillSnare);
 makeBeat(bass, 3, measure, fillBass);
 }
}

finish();

Creating Beats with makeBeat

189

Some Funk and Hip Hop Beats
Hip Hop and Funk both function well at tempos between 84 and 92 beats per
minute. If you use a running beat of 8ths, the style will gravitate closer to Hip
Hop. A running beat of 16ths will simulate a funk style.

Bass Drum Strings:
funkbassbeat1 = " 0 + 0 + – – – – 0 + 0 + – 0 + +”
funkbassbeat2 = “0 – 0 – – – – – – – 0 – – 0 – –”
Back Beat Strings:
funkbackbeat1 = “– – – – 0 – – 0 – 0 – 0 0 – – –”
funkbackbeat2 = “– – – – 0 – – 0 – 0 – 0 0 – – 0”
‘Amen Beat’ style strings with using a list to store snare and bass

sounds. drumList = [bass, snare]
amenbeat1 = " 0 + 0 + 1 + + 1 – 1 0 0 1 + + 1”
amenbeat2 = “0 + 0 + 1 + + 1 – 1 0 0 – – 1 +”
amenbeat3 = “– 1 0 0 1 + + 1 – 1 0 + – – 1 +”
16th Beat Running using a List to store closed and Open Hi Hat Sounds:
Hats = [closed, open]
sixteenthHL1 = “0000100000001000”
sixteenthHL2 = “0000100101011000”
sixteenthHL3 = “0000100101011100”
sixteenthHL4 = “0000100101011101”
sixteenthHLFill = “0000100101011111”
Funk Beat Example with Fill:

// Funk Beat Example
// Best Played at 92 to 100 Beats per minute

init();
setTempo(92);

var funkbassbeat1 = "0+0+----0+0+-0++";
var funkbassbeat2 = "0-0-------0--0--" ;
var funkbackbeat1 = "----0--0-0-00---";
var funkbackbeat2 = "----0--0-0-00--0" ;
var sixteenthHL2 = "0000100101011000";
var sixteenthHLFill = "0000100101011111";

var bass = OS_LOWTOM01;
var snare = OS_SNARE01;
var hiOpen = OS_OPENHAT01;
var hiClosed = OS_CLOSEDHAT01;
var hats = [hiClosed, hiOpen];

CHAPTER 18: Creating Beats with makeBeat

190

for(var measure = 1; measure < 9; measure++) {
 if(measure % 4 != 0) {
 makeBeat(hats, 1, measure, sixteenthHL2);
 makeBeat(snare, 2, measure, funkbackbeat1);
 makeBeat(bass, 3, measure, funkbassbeat1);
 }
 else {
 makeBeat(hats, 1, measure, sixteenthHLFill);
 makeBeat(snare, 2, measure, funkbackbeat2);
 makeBeat(bass, 3, measure, funkbassbeat2);
 }
}

finish();

Amen Beat Example:

// Amen Beat Example
// Best played at 82 to 92 Beats per minute

init();
setTempo(88);

var bass = OS_LOWTOM01;
var snare = OS_SNARE01;
var hiOpen = OS_OPENHAT01;
var hiClosed = OS_CLOSEDHAT01;
var hats = [hiClosed, hiOpen];
var bassSnare = [bass, snare];

var amenbeat1 = "0+0+1++1-1001++1";
var amenbeat2 = "0+0+1++1-100--1+";
var amenbeat3 = "-1001++1-10+--1+";
var sixteenth = "0000100000001000";
var sixteenthHL2 = "0000100101011000";

for(var measure = 1; measure < 9; measure += 4) {
 makeBeat(bassSnare, 2, measure, amenbeat1);
 makeBeat(bassSnare, 2, measure+1, amenbeat2);
 makeBeat(bassSnare, 2, measure+2, amenbeat2);
 makeBeat(bassSnare, 2, measure+3, amenbeat3);
}

for(var measure = 1; measure < 9; measure++) {
 makeBeat(hats, 1, measure, sixteenthHL2);

Creating Beats with makeBeat

191

}

finish();

Dub Step Style Beats:
Dub step music usually is played faster than 136 beats per minute with a

‘halftime’ feel using triplet style rhythms in the Bass Drum and Back Beat. Beats
here will simulate the triplet style with a 3-sixteenth, 3-sixteenth, 2-sixteenth
pattern. Dub step music also has longer patterns, usually extending across 4
measures, so the different beats are meant to be played in succession. Dub Step
music also ‘breaks’ the Bass on 1 and 3 and the Back Beat on 2 and 4 rules.

Dub Bass Patterns (Played in succession)
dubBass1 = “0 + + + + + + + – – – – – – 0 +”
dubBass2 = “0 + + 0 + + 0 + – – – 0 + + 0 +”
dubBass3 = “0 + + 0 + + 0 + – – – – – – 0 +”
dubBass4 = “0 0 + 0 0 + 0 + – – – – – – – –”
Dub Snare Patterns (This example only plays on measure 4 of the pat-

tern)
dubSnare = “– – – – – – – – – – 0 0 0 + – –”
Dub Clap Patterns:
dubClap = “– – – – – – – – 0 + + + + + + +”
dubClap1 = “– – – – – – – – 0 + + + + + 0 +”
Dub Hat Patterns: (With [closed, open] list)
dubHats1 = “– – – – 0 0 0 + 1 + + + + + + +”
Should be a triplet on beat 2
dubHats2 = “– – 0 + + 0 + + 1 + + + + + + +”
dubHats3 = “– – – – 0 0 0 + 1 + + + + + + +”
dubHats4 = “– – 0 + + 0 + + 1 + + 0 + + 0 +”

Dub Step Example:

// Dub Step Example
// Best played faster than 136 beats per minute

init();
setTempo(140);

var dubBass1 = "0+++++++------0+";
var dubBass2 = "0++0++0+---0++0+";
var dubBass3 = "0++0++0+------0+";
var dubBass4 = "00+00+0+--------";

CHAPTER 18: Creating Beats with makeBeat

192

var dubSnare = "----------000+--";

// Only Used on measure 4
var dubClap = "--------0+++++++";
var dubClap1 = "--------0+++++0+";
var dubHats1 = "----000+1+++++++";

// Should be a triplet on beat 2
var dubHats2 = "--0++0++1+++++++";
var dubHats3 = "----000+1+++++++";
var dubHats4 = "--0++0++1++0++0+";

var bass = OS_LOWTOM01;
var snare = OS_SNARE01;
var hiOpen = OS_OPENHAT01;
var hiClosed = OS_CLOSEDHAT01;
var hats = [hiClosed, hiOpen];

for(var measure = 1; measure < 9; measure += 4) {
 makeBeat(hats, 1, measure, dubHats1);
 makeBeat(hats, 1, measure+1, dubHats2);
 makeBeat(hats, 1, measure+2, dubHats3);
 makeBeat(hats, 1, measure+3, dubHats4);
 makeBeat(snare, 2, measure, dubClap);
 makeBeat(snare, 2, measure+1, dubClap);
 makeBeat(snare, 2, measure+2, dubClap);
 makeBeat(snare, 2, measure+3, dubClap1);
 makeBeat(snare, 3, measure+3, dubSnare);
 makeBeat(bass, 4, measure, dubBass1);
 makeBeat(bass, 4, measure+1, dubBass2);
 makeBeat(bass, 4, measure+2, dubBass3);
 makeBeat(bass, 4, measure+3, dubBass4);
}

finish();

African Style Drumming Patterns
These patterns seek to emulate the style of drumming ensembles and multi-
layered percussion music based on African music. The patterns here are adap-
ted from the “Unifix Patterns” as presented on the Phil Tulga website. The
drum patterns are designed to ‘weave’ in out and each pattern complements
the other. These patterns also demonstrate the use of lists.

Unifix Pattern Set 1:

Creating Beats with makeBeat

193

http://www.philtulga.com/unifix.html

ftBeat = “0 – – 0 1 – – 1 0 – – 0 1 – – 1”
tcBeat = “1 – 1 – 1 1 – 1 – 0 – 0 – 1 1 –”
guiroBeat = “1 – 0 0 1 – 0 0 – 0 – 0 1 – 0 0”
skakerBeat = “1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1”
tubeBeat = “1 – – – 0 – – – 1 – – – 0 – – –”
bottleBeat = “0 – 0 – 1 1 – 0 – 0 – 0 – 1 1 –”
High Life from Nigeria:
ftBeat = “0 – – 0 0 – 1 – 0 – – 0 0 – 1 1”
tcBeat = “0 – – 0 0 – 1 – 0 – – 0 0 – 1 1”
guiroBeat = “0 – – 1 0 – 1 – – 1 – 1 0 – 1 –”
shakerBeat = “1 0 0 1 1 – 0 1 – 1 0 1 1 – 1 0”
tubeBeat = “1 – – 1 1 – 0 – – 1 – 1 – 1 0 –”
bottleBeat = “– 1 – 0 – – – 1 – 0 – – – 1 – 0”
Fanga Beat from Liberia:
ftBeat = “0 – – 1 – 1 1 – 0 – 0 – 1 1 – –”
tcBeat = “0 – – 1 – 1 1 – 0 – 0 – 1 1 – –”
guiroBeat = “0 – 1 – – – – 0 – – 1 1 1 – – 1”
shakerBeat = “1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1”
tubeBeat = “0 – – 0 – – – – 1 – 1 – – – – 1”
bottleBeat = “– – – 1 – 1 1 – 0 – 0 – 1 1 – 0”
From Ghana:
ftBeat = “0 0 0 1 – 1 0 – 0 0 0 1 – 1 0 –”
tcBeat = “0 – – 1 – 1 0 – 0 – – 1 – 1 0 –”
guiroBeat = “0 – – 1 0 – 1 – – 1 – 1 0 – 1 –”
shakerBeat = “1 0 0 1 – 1 0 1 – 1 0 1 1 0 0 1”
tubeBeat = “0 – – 1 – – 0 – – 1 – – 1 – – 0”
bottleBeat = “0 – 0 – – – – – 0 0 – 1 – – – 0”
Example of Unifix Patterns

// Example of Unifix Patterns
// Best played between 92 and 110 (but can be faster)

init();

setTempo(100);

var fractionTubes = [HOUSE_BREAKBEAT_020, HIPHOP_TRAPHOP_BEAT_007];
var tinCanDrum = [OS_COWBELL01, OS_COWBELL02];
var guiro = [ELECTRO_DRUM_MAIN_BEAT_004, ELECTRO_DRUM_MAIN_BEAT_007];
var shaker = [OS_OPENHAT02, OS_OPENHAT03];
var tubeDrums = [OS_CLAP01, OS_CLAP02];
var waterBottles = [OS_SNARE01, OS_OPENHAT06];

var uniList = [fractionTubes, tinCanDrum, guiro, shaker, tubeDrums, waterBottles];

CHAPTER 18: Creating Beats with makeBeat

194

// From Ghana

var ftBeat = "0001-10-0001-10-";
var tcBeat = "0--1-10-0--1-10-";
var guiroBeat = "0--10-1--1-10-1-";
var shakerBeat = "1001-101-1011001";
var tubeBeat = "0--1--0--1--1--0";
var bottleBeat = "0-0-----00-1---0";

var ghanaList = [ftBeat, tcBeat, guiroBeat, shakerBeat, tubeBeat, bottleBeat];

for(var measure = 1; measure < 9; measure++) {
 for(var i = 0; i < ghanaList.length; i++) {
 var track = i + 1;
 makeBeat(uniList[i], track, measure, ghanaList[i]);
 }
}

finish();

Creating Beats with makeBeat

195

FIGURE 19-1

Additional Examples

Effect Case Studies

Case Study 1: Volume

Crescendo and Decrescendo with a Keyboard

Crescendo is the musical term for increasing volume (amplitude) over time.
Decrescendo means to decrease volume (amplitude) over time. Keyboard play-
ers often use a volume pedal to control the intensity of the sound while playing.
This example shows a keyboard increasing and decreasing volume over 8 meas-
ures:

The following code generates this example:

// Keyboard Volume

init();

var keyboard = TECHNO_ACIDBASS_006;

fitMedia(keyboard, 1, 1, 9);

// Crescendo - Volume Pedal pressed

197

19

FIGURE 19-2

setEffect(1, VOLUME, GAIN, -30, 1, 5, 5);

//Decrescendo - Volume Pedal released
setEffect(1, VOLUME, GAIN, 5, 5, -30, 9);

finish();

Note about the Volume Effect:
The parameters for the Volume Effect range from -60 to 12 with 0 being “uni-

ty” or standard volume. Why do we use this scale? Examine this image of a vol-
ume slider from a software audio mixer:

The numbers indicate a logarithmic scale that increases the order of magni-

tude as the sound grows stronger. This measures decibels which is the same as
the richter scale for earthquakes. That is why “0 dB” represents the “center” for
volume. The “0 dB” value indicates that there is no change in volume from the
original track. Positive numbers increase the volume, while negative numbers
decrease the volume. Note that for every increase by “10 dB”, the loudness of
the sound is doubled. Values between -30 and about 5 work best for the volume
effect. Note that a value of -60 means silence.

CHAPTER 19: Additional Examples

198

FIGURE 19-3

Case Study 2: Distortion

Guitar Distortion

Guitarists use a foot pedal to control the distortion level in real time during per-
formance. We can simulate this with EarSketch by using a for loop to increase
and decrease distortion over a given segment of the measure. Consider the fol-
lowing sample:

Here, a guitar player emphasizes beats 1 and 1.375 with an increase in dis-
tortion. The slope up and down of the “peaks” indicate where the pedal is
pressed and released.

Using EarSketch, the following code generates the above example:

//Guitar Distortion

init();

fitMedia(HIPHOP_MUTED_GUITAR_003, 1, 1, 9);

var distortionValues = [0, 40];

var distortionString = "1+-0+-1-0+++++-";

for(var measure = 1; measure < 9; measure++) {
 rhythmEffects(1, DISTORTION, DISTO_GAIN, distortionValues, measure, distortionString);
}

finish();

Additional Examples

199

FIGURE 19-4

Case Study 3: Panning 1

Left and Right Stereo

The “Pan” effect directs the sound to the “Left” or “Right” speakers in a stereo
system. Sweeping music from the left side to the right or from the right side to
the left gives the listener a strong sense of space as they perceive the sound
coming from different directions.

The following example shows two tracks panning back and forth, starting
from opposite sides. The bass track pans from left to right then back again to
the left, while the drum track pans from right to left then back again to the
right:

The following code generates the example:

// Pan Demonstration

init();
setTempo(140);

var bass = TECHNO_ACIDBASS_005;
var drums = DUBSTEP_DRUMLOOP_MAIN_007;

fitMedia(bass, 1, 1, 9);
fitMedia(drums, 2, 1, 9);

var start = 1;
var end = 5;
var leftside = -100;
var rightside = 100;

setEffect(1, PAN, LEFT_RIGHT, leftside, start, rightside, end);
setEffect(2, PAN, LEFT_RIGHT, rightside, start, leftside, end);

CHAPTER 19: Additional Examples

200

FIGURE 19-5

start = 5;
end = 9;

setEffect(1, PAN, LEFT_RIGHT, rightside, start, leftside, end);
setEffect(2, PAN, LEFT_RIGHT, leftside, start, rightside, end);

finish();

Note the use of variables in lines 12 to 15 to define the start, end, left, and
right sides.

Case Study 4: Panning 2

Using the pan effect on one track

You can also rapidly change sides on one track to give the sense of more than
one instrument playing. Using the same flute and drum mix, note that the pan
effect is used to “switch sides” for the flute track:

Code:

// Pan Demonstration #2

init();
setTempo(140);

var bass = TECHNO_ACIDBASS_005;
var drums = DUBSTEP_DRUMLOOP_MAIN_007;

fitMedia(bass, 1, 1, 9);
fitMedia(drums, 2, 1, 9);

Additional Examples

201

FIGURE 19-6

var panValues = [100, -100];
var panString = "1+++++0+++++++1+++0+++++1++0++++";

for(var measure = 1; measure < 9; measure += 2) {
 rhythmEffects(1, PAN, LEFT_RIGHT, panValues, measure, panString);
}

finish();

Case Study 5: Pitchshifting

Using Pitch Change and Modulation to Increase Tension

Modulation means to change the pitch center of a musical selection up or down.
Composers use modulation in upward motion to increase tension within music.
The following example uses a string passage that changes pitch upwards by 1
semitone every 2 measures.

Code:

//Pitch Change for Modulation

init();
setTempo(182);

var synth = ELECTRO_ANALOGUE_LEAD_001;

var synthBeat = "0+++++++++++++++++------0+++0+++";

for(var measure = 1; measure < 9; measure += 2) {
 makeBeat(synth, 1, measure, synthBeat);
}

CHAPTER 19: Additional Examples

202

FIGURE 19-7

for(var pitch = 0; pitch < 4; pitch++) {
 var start = (pitch * 2) + 1;
 var end = start + 2;
 setEffect(1, PITCHSHIFT, PITCHSHIFT_SHIFT, pitch, start, pitch, end);
}

finish();

Notes for Pitch:
A “semitone” is a half step in music. An interval is the “distance” between

pitches measured in semitones. Below you can see how semitones relate to the
keys on a keyboard:

Common Intervals:

Half Step 1 semitone

Whole Step 2 semitones*

Additional Examples

203

Major 3rd 4 semitones

Perfect 4th 5 semitones

Perfect 5th 7 semitones

Minor 6th 8 semitones

Major 6th 9 semitones

Minor 7th 10 semitones

Major 7th 11 semitones

Octave = 12 semitones

* A common modulation technique in popular music to to move up by 2
semitones or 1 whole step, usually on return to the chorus section after a bridge

Abstracting the remix
This example follows from the lesson on Remixing the Rhythm in “Random-
ness and Strings”.

In “Remixing the Rhythm”, we looked at adding some rhythmic effects to a
predefined drum beat. If we want to perform this operation more than once,
and generalize the parameters, we should abstract it by making a function.

Below, we have added several features. Our “random string insertion” proce-
dure is now a function. A very similar function called beatRepeat() has also
been added. It produces a stuttering-like sound, because it repeats the drum
sound of a specified location in the amenBreak string. The two of them togeth-
er provide some balance of repetition and randomness.

// javascript code
//
// script_name: Amen Remixer
//
// author: The EarSketch Team
//
// description: Two functions (insertRandom and beatRepeat) for remixing the Amen beat. Each one replaces a segment of the Amen break with a new string.
//
//
//

//Setup
init();
setTempo(170);

CHAPTER 19: Additional Examples

204

//Music

var drums = [OS_KICK05, OS_SNARE06, Y24_HI_HATS_1, Y58_HI_HATS_1, OS_OPENHAT01];

var a = "0+0-1+-1+1001+-1";
var b = "0+0-1+-1-10---1+";
var c = "-1001+-1+10---1+";
var cym1 = "2+2+2+2+2+2+2+2+";
var cym2 = "2+2+2+2+2+3+2+2+";
var cym3 = "2+2+2+2+2+4+2+2+";

// Creating a long string by concatenating shorter segments. "amenBreak" is our important string here.
var amenBreak = a + a + b + c; // 16 * 4 beats = 64 beats
var beat2 = cym1 + cym1 + cym2 + cym3;

// Choose a position in our beat string, and the drum at that position will be repeated for numBeats
// Returns a new string
function beatRepeat(track, beatPosition, numBeats, beat) {
 var newBeat = beat;
 // We need something to concatenate to, so we initialize this variable to an empty string
 var insertSection = "";
 var drumToRepeat = beat[beatPosition];

 for(var i = 0; i < numBeats; i++) {
 insertSection += drumToRepeat;
 }

 // Check if our beatPosition is too late to be useful
 if(beatPosition >= beat.length-2) return;

 // If our beatPosition is at the start, we need to make our frontSection in a different way
 if(beatPosition == 0) {
 var front = "";
 } else {
 var front = newBeat.substring(0, beatPosition);
 }

 var end = newBeat.substring(beatPosition+numBeats, beat.length-1);
 newBeat = front + insertSection + end;
 return newBeat;
}

// Choose a position in our beat string, and random drums will be inserted at that position for numBeats
// Returns a new string
function insertRandom(track, beatPosition, numBeats, beat) {
 var newBeat = beat;
 // We need something to concatenate to, so we initialize this variable to an empty string
 var insertSection = "";

Additional Examples

205

 for(var i = 0; i < numBeats; i++) {
 // Concatenating random numbers using +=
 insertSection += Math.floor(Math.random() * 5);
 }

 // Check if our beatPosition is too late to be useful
 if(beatPosition >= beat.length-2) return;

 // If our beatPosition is at the start, we need to make our frontSection in a different way
 if(beatPosition == 0) {
 var front = "";
 } else {
 var front = newBeat.substring(0, beatPosition);
 }

 var end = newBeat.substring(beatPosition+numBeats, beat.length-1);
 newBeat = front + insertSection + end;
 return newBeat;
}

// Each beatRepeat and insertRandom call returns a transformed version of beat,
// so we assign the returned value to beat.
amenBreak = beatRepeat(1, 32, 9, amenBreak);
amenBreak = beatRepeat(1, 17, 5, amenBreak);
amenBreak = insertRandom(1, 0, 16, amenBreak);
amenBreak = insertRandom(1, 7, 3, amenBreak);

makeBeat(drums, 1, 1, amenBreak);
makeBeat(drums, 2, 1, beat2);
makeBeat(drums, 1, 5, amenBreak);
makeBeat(drums, 2, 5, beat2);

setEffect(1, FILTER, FILTER_FREQ, 4000.0);

//Finish
finish();

When you abstract a procedure, you need to carefully consider the different

kinds of input, and make sure your function can respond reliably regardless of
the input. That is the reason for the conditional check in our function: when the
input is 0, it must respond differently.

On your own, try making the beatPosition random for each call.

CHAPTER 19: Additional Examples

206

EarSketch Sound Library

To find sounds that work well together in your music, choose them from the
same folder. For example, pick all your sounds from DUBSTEP_140_BPM or all
of them from Y30_68_BPM_B_MINOR.

To hear a sound, click the play button next to its name. To use a sound in
EarSketch, click the paste button to paste the sound constant into your script at
the current cursor position. To help you find sounds, you can search by keyword
and you can filter by artist, genre, and instrument.

Most of the sound folders are labeled with a tempo. Tempo is the speed of
music (how slow or fast). In EarSketch, you always specify the tempo of your
song using the setTempo function. For example, setTempo(120) will set the
tempo of your project at 120 beats per minute. Though not required, we sug-
gest you set the tempo to match the original tempo of the sounds you choose.
To find the original tempo, click on the tags button next to the sound.

As you get more comfortable creating music with EarSketch, you may want
to experiment some more by combining sounds from several different folders in
the same song and by trying out different tempos. When experimenting, use
your musical ear to help you decide what sounds good and what doesn’t, and
try a bunch of different possibilities to figure out what you like best.

Some of the sound folders also list a key for the sounds in that folder. For
instance, the sounds in Y57_87_BPM_G_MINOR are in the key of G minor. In mu-
sic, a key indicates a scale (like major or minor) and a particular “home” note
(called the tonic) from which most of the pitches are drawn. So if you want to
combine sounds from two different folders (other than just drums), they are
more likely to sound good together if they are in the same key.

The sounds in the EarSketch library come from several different sources. Ri-
chard Devine (a well-known sound designer and electronic musician)
and Young Guru (a Grammy-nominated DJ and audio engineer best known for
his work with Jay-Z) each created about 2000 sounds specifically for EarSketch.
Some additional sounds in the MAKEBEAT folder contains a collection of single
drum hits suitable for use with EarSketch’s makebeat function. These were cre-
ated by Thom Jordan, a member of the EarSketch research team.

207

20

http://devinesound.net/
http://devinesound.net/
http://www.djyoungguru.com/

To add your own sounds to EarSketch, follow the instructions on our web
site for Chapter 22. Your sounds will then be displayed in the USER_SOUNDS
folder here.

CHAPTER 20: EarSketch Sound Library

208

Programming Reference

Online JavaScript Interpreter
Codecademy Labs: Run JavaScript code in your browser for instant feed-
back. You can share your code snippets with others, and download them to
your computer. Note: You cannot use any modules from the EarSketch API in
this editor.

External Help
Official JavaScript Tutorials: These tutorials contain many useful explana-
tions and examples to help you learn to code in JavaScript.

What is Programming?
Programming is the process of writing instructions that a computer uses to
perform tasks. These instructions are written in a very specific format
called code. When a programmer writes a program in code, the computer exe-
cutes the code one line at a time until it reaches the end. With good program-
ming skills and knowledge, you can write code that can create almost anything
imaginable.

Computers can only understand problems in a very specific way. In order to
produce a program that a computer will be able to understand and run, a prob-
lem needs to be broken down into many small steps. In turn, these steps must
be written in code of the appropriate language and in the explicit order in
which the computer should complete them.

There are many different types of programming languages that consist of
particular and unique terms, phrases and conventions. The set of rules that de-
fine the combination of symbols that are used within a certain language is
called that language’s syntax. Every language, including English, has a different
syntax and, therefore, must be written differently to accomplish correct form.
For example, in English, we capitalize proper nouns and add punctuation to the

209

21

http://labs.codecademy.com/
https://developer.mozilla.org/en-US/Learn/JavaScript

ends of our sentences as a part of the syntax of the language. There are differ-
ent and specific syntax rules for all of the different types of programming lan-
guages. Some of the most popular programming languages used today are
Java, JavaScript, Python, and C.

Programming Terms
Boolean

A variable data type that stores a value that is either true or false

Commenting
Comments are sections of code that the computer does not execute. These
sections are made for the programmer to explain portions of code in order
to make his or her program more readable to himself or herself and to other
people. In JavaScript, comments are denoted with //. Any text after a// is
considered to be a comment. Multi-line comments act the same way as sin-
gle line comments, but must begin with /* and end with */. Example:

// This is a comment

/*
this is a multi-line comment
it extends across multiple lines
*/

Conditional
A type of statement that checks to see if an argument is true or false before
executing some amount of code. Types of conditionals are if-statements,
else-if-statements and else-statements. For example,

if(x < 0) {
 println("Negative.");
} else if (x == 0) {
 println("Neither positive nor negative");
} else {
 println("Positive.");
}

CHAPTER 21: Programming Reference

210

This code reads as: if the variable x (defined elsewhere in code) is less than
zero, print negative, however, if the parameter x equals zero, it is neither
positive nor negative. Otherwise, x is positive.

Object
A collection of key-value pairs that maps from keys to values (often called a
map or dictionary in other programming languages).Example:

var greetings = {
 "hello":["hola"],
 "goodbye":["adios"]
};

println(greetings.hello);
println(greetings.goodbye);

hello and goodbye are keys whereas hola and adios are values. To get a
value from one of the object’s keys (called a “property” in JavaScript), you
write the object’s name followed by a dot and the key: object.key

Function
A named sequence of statements that performs some useful operation.
Functions may or may not take in parameters. Each call you make to the Ear-
Sketch API is called a function call. This calls for the code that defines that
function to execute.

//defining a function
function myFunction(string) {
 println(string);
}

//calling a function
myFunction("hello world");

//the result is that 'hello world' gets printed to the EarSketch console

Index
An integer variable or value that indicates an element of an array. The first
element of an array has an index of zero.

Programming Reference

211

// an example array of colors
var list = ["red", "blue", "green", "yellow"];

//call the value at index 2
println(list[2]);

//'green'

//assign a new value to index 2
list[2] = "orange";

//print index 2 again
println(list[2]);

//'orange'

Keyword
A reserved word that is used by JavaScript to parse the program; you cannot
use keywords as variable names. (A list of JavaScript keywords are available
after this section).

Array
A named collection of objects, where each object is identified by an index.
The items within an array can be of any data type (e.g. int, str, float). Exam-
ple:

var array = [1, 1.5, 2, 2.5, 3];

• the value of array[0] is 1

• the value of array[1] is 1.5

• the value of array[4] is 3

After being created, it is possible to change elements of an array by reassign-
ing the different indices to different values. For example, if you have the ar-
ray above, you could change the first element at index 0 in the following
way:

array[0] = 5;

CHAPTER 21: Programming Reference

212

Now the first element is no longer 1. It is 5.

Loop
A statement or group of statements that execute repeatedly until a terminat-
ing condition is satisfied. There are two main types of loops: a for loop and a
while loop. For loop:

for(var i = 0; i < 10; i++) {
 println("Hello");
}

The above code prints “Hello” once for each number in the range between 1
and 9. For loops are useful if there is a specific number of items that you
wish to iterate over. While loop:

var n = 5;

while(n > 0) {
 println(n);
 n = n-1;
}

The above code first checks to see if n is greater than zero. If this is true, n is
printed and then decremented by 1. The loop continues to execute until the
condition that n is greater than zero is false. While loops are useful if you do
not have a specific set of items to iterate through. In any situation, a for loop
can be written as a while loop and vice versa. It is ultimately up to the pro-
grammer to choose which will work best for any given situation.

Number
A JavaScript data type that consists of both integers and floating-point num-
bers. Floating-point numbers have decimal components. Note that integers
and floating-point numbers are not different data types in JavaScript, as
they are in many other languages (they are called “literals”). Examples:

//Floating point numbers
var a = 0.5;

Programming Reference

213

var b = -2.0;
var c = 6.67

// Integers
var d = 50;
var e = 0;
var f = -12;

Parameter
A name used inside a function to refer to the value passed as an argument.
For example, in the function setTempo(tempo), tempo is the parameter.

return
The return keyword signals to the program that the end of a function has
been reached. When a return statement is executed, the currently running
function will terminate. The function can simply return with no output, or it
can return a value. A function will automatically return after executing all of
its statements, even if return is not written. For example:

function add(x,y) {
 var result = x+y;
 return result;
}

The above code will return the sum of x and y.

String
A JavaScript data type that holds characters. A character can be a letter,
number, space, punctuation or symbol.Examples:

var myString = "This is a string!"
var myOtherString = "$tring..."

CHAPTER 21: Programming Reference

214

FIGURE 22-1

Press the plus sign to
upload or record

Recording & Uploading Sounds

EarSketch allows you to record or upload your own sounds, to use as clips in
your EarSketch projects. Using your own sounds and clips in an EarSketch
project is a fun way to make your music more personalized. You can access this
feature in the Sound Browser, by clicking the “plus” sign left of the search bar.

This brings you to a menu, where you can choose to either upload or record

sounds:

215

22

Uploading audio files to use in EarSketch

EarSketch only currently supports sound files uploaded in most common au-
dio file formats. Once you’ve found an audio file you want to use in an Ear-
Sketch project, you can click “File Upload” to upload it from your computer. Se-
lect the audio file you want to upload and give it a name.

CHAPTER 22: Recording & Uploading Sounds

216

If you know the tempo (BPM) of your sound, you should specify it in the dia-

log box. Once EarSketch knows the tempo of your sound, it will automatically
speed it up or slow it down to match whatever tempo you specify in your Ear-
Sketch script using setTempo(). Your sound will then sync up rhythmically
with the rest of your tracks. If you don’t know the tempo, leave the tempo box
blank. EarSketch will not speed up or slow down your sound to match setTem-
po(), but this is fine if your sound is a sound effect or a drum hit or something
else that doesn’t need to sync rhythmically with other tracks. It is also fine for
when you are using your sound with makeBeat().

Recording your own sounds

If you want to record directly into EarSketch, click on “Quick Record” in the
“Upload New Sounds” screen (see above). Your browser will probably ask you
for permission to use the microphone, like below. Press “allow” or “share”.

Recording & Uploading Sounds

217

FIGURE 22-2

The EarSketch
Recorder

On the next screen, we have the recorder. Choose the number of measures
you want to record, set the tempo for the clip, specify the number of countoff
measures (this gives you 4 clicks per measure before recording so you know
how fast to play), then press REC to start recording! When you’re done, give
your clip a name (bottom right) and press “Upload the Sound File”.

CHAPTER 22: Recording & Uploading Sounds

218

FIGURE 22-3

Finding your clips
with the “Artists”
menu

Using your uploaded/recorded sounds
Once your sound is uploaded or recorded, you can find it in the Sound

Browser. To display your sounds, click “Artists”, then click your username
(shown below as “EARSKETCH_USER”) to display only your sounds. Upload as
many clips as you want and start personalizing your EarSketch projects with
original sounds!

Recording & Uploading Sounds

219

Copyright

What is Copyright?
When you own your car, or your cell phone, or your watch, that ownership is
pretty simple: if you paid for it, then it’s yours, and if someone takes it from you
without your permission then you no longer have it and they’ve stolen it. But
what about things like a movie or an invention or a song - things that you can’t
see or touch? Someone can’t steal a song that you wrote in the same way that
they can steal your watch, but that song still has value. So there can still be
ownership in these things as well - we call that intellectual property. There are
different types of intellectual property that deals with other sorts of things like
inventions or brand names, but what’s important for music is copyright. Copy-
right is the part of the law that covers ownership in creative work. Whether
you’ve made a movie or written a newspaper article or created a song, copy-
right tells us both what other people can’t and what they can do with it. As mu-
sicians, copyright is important because: (a) it keeps people from using your
work in ways you wouldn’t want (for example, someone else selling it without
your permission); and (b) it lets you know when and how you can use other
people’s work when creating your own (for example, remixing and sampling).

221

23

Credit: copyright_001.jpg / Olivia Hotshot / CC BY-NC 2.0

Copyright Basics
Here’s the first thing you should know about copyright: You probably already
have one! All you have to do to get a copyright in something is to create it in
some form outside your head. When you doodle pictures in the margins of
your notebook during class? Copyrighted. When you write down song lyrics?
Copyrighted. When you lay down an original drum beat? Copyrighted. It’s a
little more complicated than this since you have to be sure that there’s enough
of something and that it’s original enough to be copyrightable (maybe not that
140-character Twitter status), but as a general rule, if you make something cre-
ative and new then you have a copyright automatically. So what does that give
you? In the United States, having a copyright gives you six exclusive rights
over what you create:

• to make copies
• to make derivative works (a new work based on the original - like a movie

adaptation of a book)
• to distribute copies

CHAPTER 23: Copyright

222

http://www.flickr.com/photos/oliviahotshot/3497952240/
http://www.flickr.com/photos/oliviahotshot/
http://creativecommons.org/licenses/by-nc/2.0/

• to perform publicly
• to display publicly
• to digitally transmit

Copyright infringement is when anyone other than you does any of those
things with your work without your permission - unless it’s covered by some
exception (like fair use, which we’ll cover in a later module). A really com-
mon example of copyright infringement these days is illegally downloading
music. If you upload a song without permission onto the Internet so that other
people can download it, then you’ve violated both the right to make copies
and the right to distribute copies. If you download a song that someone else
put up illegally, then you’ve violated the right to make copies as well. If you
create an original piece of music and put it on the Internet, even if it’s not for
sale, then if someone copies it without your permission, then they’ve violated
your copyright. A lot of times you might not mind - in fact, you might want
people to share your music! When you read about licenses you’ll learn some
ways to signal that this is the case. Remember that copyright isn’t all about
getting people into trouble. It’s even in the Constitution, which says its pur-
pose is to “promote science and the useful arts.” Copyright should help us
make and share more art, not less. When you’re creating things in EarSketch,
we want you to think less about stealing and more about sharing. EarSketch
works because artists have shared their work with you, resulting in the library
of samples you use to make new music - using the social media site or letting
other students remix your code is a way of paying that forward and helping to
put new art into the world.

Music and Sampling
One thing you should know about copyright is that it can get pretty complicat-
ed, especially when you consider laws from a lot of different countries. This
module gives you a basic idea of how music copyright works in the United
States, and how it applies to sampling.

Copyright

223

Credit: Rocketship Music (#96639) / mark sebastian / CC BY-SA 2.0

Copyrights in Music
When you hear a song on the radio, or download one from iTunes, there are ac-
tually two copyrights involved, not just one - the rights to the song and the
rights to the sound recording. So when you hear, for example, the song “Hurt”
by Nine Inch Nails, there are two pieces of the pie to carve up: (1) ownership in
the song (the composition) by Trent Reznor, because he wrote it; and (2) owner-
ship in the sound recording most likely by A&M because they’re the record com-
pany. And then when you hear “Hurt” by Johnny Cash, there are still two pieces
of the pie: (1) Trent Reznor still owns the composition; and (2) Universal Music
Group owns the sound recording because they were Cash’s record label. What
this means is that when someone needs permission to use a song, then they
might have to get two pieces of permission, not just one.

Part of this distinction in the two copyrights covers who gets money when.
 For example, for record sales, much of the royalties go to the owner of the
sound recording copyright (usually, the record label), but royalties from public
performances (which includes radio play) go to the songwriter. Because it
would be pretty difficult for a songwriter to go around and collect royalties from
every restaurant or hotel or radio station where someone is performing her mu-

CHAPTER 23: Copyright

224

http://www.flickr.com/photos/markjsebastian/4097268668/
http://www.flickr.com/photos/markjsebastian/
http://creativecommons.org/licenses/by-sa/2.0/

sic, there are some organizations that do this for them. ASCAP (American Soci-
ety of Composers, Authors and Publishers) is the biggest, and it negotiates and
collects fees from all of these places and divvies it up among songwriters.

The important thing to know here is that the composition of a song and the
recording of a song have different copyrights. If you’re using samples, then
you’re probably dealing with the sound recording copyright in deciding wheth-
er you have permission to use something or not. If you create music yourself
but it’s a cover of an existing song, then the copyright at issue is the composi-
tion.

Legal Issues with Sampling
Sampling means taking part of a sound recording and using it in a new piece of
music. All of the sounds in the EarSketch library are samples. You’re not creat-
ing sounds from scratch, but instead combining and using them in new ways.

 The use of samples in music has been causing legal controversy for a long
time. In order to sample a piece of music you have to copy that small part of it,
which could be a violation of the copyright in that sound recording.

In the very early days of sampling - when it involved manipulation with tape
recorders - no one really asked for permission. However, by the 1980’s, it was
not uncommon for copyright owners to complain about samples, and so many
artists using sampling began to license instead - that is, to get permission to use
part of a song.
Sometimes it is hard to identify a sample in a song because it is such a small
part. Could just a few notes really be copyright infringement? According to a
court case from 2005, even as little as three notes could be infringement. This
is why most artists “clear” the samples before using them - they pay for a li-
cense, or permission, from the owner of the original recording. Of course,
copyright law contains some exceptions where certain kinds of uses are not in-
fringement - you will learn about fair use in the next module.

Fair Use
You probably have some notion that copyright law has some exceptions. After
all, if you couldn’t ever copy anything, then how could you quote a line from a
book in a book review or parody a television show on Saturday Night Live?
 Copyright is important, but so is free speech and creativity, and so in the Uni-
ted States fair use is the part of the law that acts as a sort of “safety valve” to
keep copyright from going too far. It allows for some uses of copyrighted con-
tent under certain conditions.

What are those conditions? That is somewhat complicated. Fair use is deci-
ded on a case-by-case basis by a judge, and so there aren’t any “bright line”

Copyright

225

rules about what is a fair use. Instead, there are a set of four factors to be
weighed to make the determination:

(1) The purpose and character of the use. What are some of the character-
istics of the new use? If you are using part of a copyrighted work for education-
al purposes, or for critical commentary on the original, then it is more likely to
be fair use. It is also more likely to be fair use if you are using something non-
commercially - that is, you’re not getting paid for it. Also, how transformative is
the use - is it very different than the original? This is also the part of fair use
that covers things like parody and satire.

(2) The nature of the copyrighted work. Basically, fair use is less likely if
the original work is fiction rather than nonfiction, and if it is published rather
than unpublished. Note that putting something on the Internet counts as being
published.

(3) Amount used. The more of an original work you use, the less likely it is
to be fair use. So quoting one line from a book in a book review is probably fair
use. Copying an entire book but changing one word and republishing it is prob-
ably not.

(4) Market harm. Is the new work harming the market for the original?
 Think about it this way: Does the existence of this new work mean that people
are less likely to buy the original? A use is also less likely to be fair use if it eats
into a potential market for the original. For example, if you make a movie from
a book without paying for the rights, then that means that the book’s copyright
owner might not be able to make their own movie.

So is sampling fair use? Unfortunately, there isn’t a clear answer to that. A
lot of very smart legal scholars and lawyers have come to completely different
conclusions on that question. Because fair use is determined on a case-by-case
basis, you don’t know for sure until someone sues someone else and it goes to
court. Though what we do know is that there are some very well known sam-
pling artists - GirlTalk is one example - who aren’t being sued, and one possible
conclusion is that the copyright owners think that this work might be fair use.

You might also see a lot of stuff on the Internet that seems to be copyright
infringement but isn’t getting anyone in trouble - some of this might be fair use
as well. Think about all of the image memes that you see passed around online
- there is probably a copyright in the original image being used. However, since
the use is noncommercial, it is transformative of the original, and it isn’t harm-
ing the market from the original, it is probably fair use.

So fair use is one way that people are allowed to make new, transformative
works based on copyrighted material. Unfortunately, the law is kind of confus-
ing and it is hard to know exactly when a use is fair or not. This is another rea-
son why most artists get permission for the samples they use. You’ll learn
about licenses in the next module.

CHAPTER 23: Copyright

226

Licensing and Free Culture
To license is to give permission. If you own a copyright in something and you
want to let someone else use it, you typically don’t just sign over your copyright
- instead you give them permission for that use. For most songs that you hear
on the radio with samples of other songs, the artist of the new song negotiated
a license with the original song’s owner to use that sample. However, licenses
don’t only work with a specific person in mind - you can also put a license on
your work that will let anyone use it.

For example, all of the samples in EarSketch are licensed so that you are al-
lowed to use them however you like. This means that all the music you create
in EarSketch is totally yours, and you have the copyright, and you can do what
you want with it.

Open, permissive licenses like this are sometimes called free culture licen-
ses. This means that by putting your work out there so that other people can
use it, you’re contributing to a pool of art and culture that is freely available
and in turn inspires more art. Just think: Right now you have all of this great
material to work with. The musicians who created the samples in EarSketch
have licensed it to us so that you can use it completely freely. Something you
should consider as you continue to make music is whether you want to pay this
forward and encourage other people use your work as well.

In EarSketch, we encourage you to remix one another’s work. If you put your
music up on the social media site, then other EarSketch users can remix it and
make new and awesome stuff, and it gives you credit on the site so that every-
one knows where the source material came from.

Outside of EarSketch, what if you think that it’s great if someone remixes
your music, but you want to make sure that you get credit for it, or that no one
else makes money from it? There’s a license for that, too!

Creative Commons licenses let creators specify what rights they keep and
what rights they give away. By default, copyright is “all rights reserved” - that
is, you keep all of those rights that we listed in the first module. Creative Com-
mons (CC) lets you say “some rights reserved” - for when you want to let others
use your art in some ways. Here are the possible parts of a CC license.

“You can use this work however you like, EXCEPT...”

• “... you have to put my name on it.” - Attribution (BY)
• “... you can’t change it at all.” - No Derivatives (ND)
• “... you can’t make money from it.” - Non-Commercial (NC)
• “... you have to share whatever new thing you make under the same li-

cense.” - Share-Alike (SA)

By default, all licenses include attribution (BY) but otherwise, you can mix-
and-match. So the most permissive license you can use is CC-BY but you could

Copyright

227

also use something like CC-BY-ND-NC (Attribution-No Derivative-
Noncommercial).

How do you use a Creative Commons license? Really, all you have to do is
use it - just put it on your work if you release it on the Internet, for example.
 However, their website also has a license chooser where you can go through
and get HTML for whatever license you pick.

Also, the great news for music remixers is that Creative Commons means
that you can find other people’s work to use as well. One great resource is
ccMixter which has tons of CC-licensed music that you’re free to use and sam-
ple and remix so long as you abide by whatever CC license the creator puts on
their music. Music also isn’t the only media where there is a lot of CC-licensed
work, and someday when you need to make an album cover you should have a
look at Flickr,which lets you search photographs by license. That is also where
all the photos in these modules come from! You can click on the links in the
captions to see the original photograph and the license that the photographer
used.

HOW TO: Free Culture / CC BY-NC 2.0

CHAPTER 23: Copyright

228

https://creativecommons.org/
http://ccmixter.org/
http://www.flickr.com
http://www.flickr.com/photos/11105112@N00/3556250/in/photolist-je9E-sx4t6-5hUMik-5U33n-bV2UGe-JSQsU-aVp49-sEFc-4Ld9bz-smfD-smeh-smfo-smed-smer-smeM-smg9-smdT-smeb-smfY-smeT-smgi-sme1-smgp-smfw-smeo-smfr-smg8-smeV-smdW-smeR-smfT-smeQ-smdF-sme4-smeX-smg7-smfF-smfQ-smdv-sme9-smeN-smfM-smgj-smfv-smdt-4o2M1-smfg-smfJ-niPhd-7CTZp7-jed1
http://creativecommons.org/licenses/by-nc/2.0/

As remixers, you have a lot of options when it comes to your own work and
finding other people’s work that you can use. The best advice is to be cautious
when using copyrighted work without permission. However, the more open ev-
eryone is - maybe starting with you! - then the easier that will be in the future.

Copyright

229

Curriculum PDF

Click here to download a PDF version of the EarSketch Curriculum.

231

24

http://earsketch.gatech.edu/earsketch2/pdf/EarSketchJS.pdf

Teacher Materials

To access teaching materials for EarSketch, click this link. A password is re-
quired for access. If you are a teacher and you do not yet have the password,
please contact us.

233

25

	Table of Contents
	Part I. Welcome
	Chapter 1. Getting Started with EarSketch
	
	
	
	
	
	
	
	

	Chapter 2. The Building Blocks of a Program
	
	
	
	
	

	Chapter 3. The Core EarSketch Functions
	
	
	
	
	
	

	Chapter 4. Debugging
	
	
	
	

	Chapter 5. Looping
	
	
	
	

	Chapter 6. Making Decisions
	
	
	
	
	
	
	

	Chapter 7. Musical Form
	
	
	
	
	
	Conclusions

	Chapter 8. Making a Drum Set
	Chapter 9. Randomness and Strings
	
	
	
	

	Chapter 10. More Effects
	
	
	

	Chapter 11. Teaching Computers to Listen
	
	
	

	Chapter 12. Sonification
	
	
	

	Chapter 13. Sorting
	

	Chapter 14. Recursion
	
	
	
	Cantor Set
	
	

	Chapter 15. The EarSketch API
	Chapter 16. Every Effect Explained in Detail
	Chapter 17. Analysis Features
	Chapter 18. Creating Beats with makeBeat
	Chapter 19. Additional Examples
	
	
	
	
	
	

	Chapter 20. EarSketch Sound Library
	Chapter 21. Programming Reference
	
	
	
	

	Chapter 22. Recording & Uploading Sounds
	Chapter 23. Copyright
	
	

	Chapter 24. Curriculum PDF
	Chapter 25. Teacher Materials

